PCC(E) is travelling to Poland, so posting will be light until he is installed.
Meanwhile, in Dobrzyn, Hili is practising her moves for when Jerry arrives:
Hili: Don’t you want to read a book?
A: Why?
Hili: So I can disturb you.
Hili: Czy nie chcesz poczytać jakiejś książki?
Ja: Dlaczego?
Hili: Żebym ci mogła przeszkadzać.
And some good news from Midway Island:
Dr. Zubin Damania praised and promoted RFK Jr.-loving doctors. We criticized these doctors and corrected their factual errors. See the difference?
The post ZDoggMD on RFK Jr.’s Rise: “I’m Talking About Like These Science Based Medicine Guys” first appeared on Science-Based Medicine.Popular media love talking about asteroid mining using big numbers. Many articles talk about a mission to Psyche, the largest metallic asteroid in the asteroid belt, as visiting a body worth $10000000000000000000, assumedly because their authors like hitting the “0” key on their keyboards a lot. But how realistic is that valuation? And what does it actually mean? A paper funded by Astroforge, an asteroid mining start-up based in Huntington Beach, and written by a professor at the Colorado School of Mine’s Space Resources Program takes a good hard look at what metals are available on asteroids and whether they’d genuinely be worth as much as the simple calculations say that would be.
The paper divides metals on asteroids into two distinct types—those that would be worth returning to Earth and those that wouldn’t. Really, the only metals judged to be worthy of returning to Earth are the platinum-group metals (PGMs), which are known for their extraordinarily high cost, relatively low supply, and high usefulness in a variety of modern-day technology. That includes catalytic converters, which is why they are commonly the target of thieves.
The other category would be metals used for in-space construction, such as iron, aluminum, and magnesium. While these might not be economically viable to send back to Earth because of their relatively low prices on our home planet, they are useful up in space for constructing large structures, such as space stations or solar power arrays. However, given the chicken-and-egg problem of not having any demand for these space-sourced metals because they are so expensive, it is hard to quantify how much they are worth. Its competition (i.e. launching the material from Earth), is priceable though, and at $10,000 / kg, plus $100 / kg for a common material such as iron.
Fraser talks about whether we would mine asteroids.Those prices aren’t anywhere near the $500,000 / kg that a PGM such as Rhodium has ever back on Earth, but it could still make mining asteroids for iron economically viable if the material is used in space. So what do all those calculations mean for the actual value of the asteroids that we might mine?
First and most importantly, recent research suggests that asteroids made out of “pure metal,” such as Psyche is assumed to be, are likely pure fiction. While that might not be great news for any single benign asteroid worth a lot, the other part of that research is that even asteroids that were originally thought to be relatively low in metal content actually have reasonable quantities that could be economically extracted.
To prove the point, the paper looked in detail at a series of meteorite studies, which are the equivalent of left-over asteroids, and compared the “grades” of 83 different elements with ores found on or near the Earth’s surface. Since remote sensing has difficulty distinguishing between some of those elements, meteorite samples that can be subjected to advanced analysis techniques are our best bet at accurately calculating the chemical composition of asteroids, other than the few samples of in-tact asteroids that have been returned so far.
Isaac Arthur also discusses the prospects of asteroid mining.That data showed that PGMs, while lower in concentration than considered initially (because of an assumption in a foundational paper on the composition of asteroids), are still in much higher concentrations than the equivalent terrestrial ores. In particular, a material known as a refractory metal nugget (RMN) could have concentrations of PGMs orders of magnitude higher than anything found on Earth or other types of asteroidal material.
RMNs are primarily found in a calcium aluminum inclusion (CAI) structure, mainly on L-type asteroids. L-types are relatively uncommon asteroids with a reddish tint, but we haven’t yet visited them. They might be made up of more than 30% CAIs, though, in which case, they could contain a significant amount of extractable PGMs without additional processing.
However, RMNs themselves are very small, at the micron to sub-micron range, making them extremely hard to process in the first place. So, bulk extraction from asteroidal regolith could range up to hundreds of ppm, which is already a few orders of magnitude greater than their concentration in Earth’s regolith.
Fraser talks about mining Psyche, the largest “metallic asteroid” in the asteroid belt.When looking at the metals for use in space, they are about as abundant as initially predicted, but they face challenges in processing them out of their oxidized states. Typically, this requires some high-energy procedure, such as molten regolith electrolysis, to break off the elemental metal, which is needed for further processing. Again, there’s the chicken and egg problem of having a power source that is large enough to perform these processes, but building it would require the material that would require the power source.
Eventually, that problem will disappear if companies like AstroForge have their way. Remember that the company funded this study, and its two co-founders and Kevin Cannon, the professor at CSM, were co-authors. The company plans to launch its next mission, a rendezvous with near-Earth asteroids, to try to tell if they’re “metallic” in January. Perhaps that mission will help contribute to our growing understanding of the composition and value of the asteroids surrounding us.
Learn More:
Cannon, Gialich, Acain – Precious and structural metals on asteroids
UT – What Are Asteroids Made Of?
UT – What Is The Difference Between Asteroids and Meteorites?
UT – Asteroids: 10 Interesting Facts About These Space Rocks
Lead Image:
Asteroid mining concept.
Credit: NASA/Denise Watt
The post How Much Are Asteroids Really Worth? appeared first on Universe Today.
I like John Fetterman (a Senator from Pennsylvania) because he’s quirky, speaks his mind, and because he wears shorts on the Senate floor. (at 6 foot eight inches, he’s also the tallest Senator). Some of his quirkiness may be due to his seious stroke, but this article shows his straight talk—rare in today’s prominent Democrats. You can read about his political positions here.
You can read his interview with Jess Bidgood by clicking on the headline below, or find the story archived here.
There aren’t any revelations, just Fetter being himself and chilling, as well as telling the Democrats to chill the f out instead of pulling a Laura Helmuth or threatening to leave America. It’s a short interview and I’ve put a few excerpts below. This is pure Fetterman (I’d love to see him have a postmortem discussion of the election with James Carville).
BTW, he’s 55 years old.
Some excerpts:
Senator John Fetterman wasn’t in Washington for the first Trump administration. But he has a few ideas about how Democrats should handle the second.
He wants his party to accept its losses. He wants his party to chill out a little. And he wants his party to please stop with all the hot takes about what went wrong in November, since Democrats have four long years to figure it out.
Fetterman has some experience taking on President-elect Donald Trump’s G.O.P. He won his seat in 2022 after overcoming a near-fatal stroke and beating the Trump-endorsed Dr. Mehmet Oz, who has since become the president-elect’s pick to run Medicare. As the Democratic Party reckons with its losses in places like Pennsylvania — where Trump beat Vice President Kamala Harris by 1.7 percentage points and Bob Casey, a third-term Democratic senator, lost his seat — I called Fetterman.
Our conversation was the first in a series of interviews I’ll do in this newsletter about the path forward for the Democratic Party.
And the Q&A:
How do you think Democrats should be talking to bros, and should be talking to men, and should be talking to working-class voters?
Have a conversation. Have a conversation with anyone that’s willing to have an honest conversation. That’s always been the rule, and that’s what I’m going to continue. I’ve had conversations on Fox News, and they’ve played me straight. I’ve shown up on Newsmax, and they’ve played it straight. And Rogan. Rogan was great. He was cordial and open and warm.
Why was it important to you to go on Joe Rogan?
I’m a fan. I’m a huge fan of Bill Maher, a huge fan of Colbert.
. . . Do Democrats need to do an analysis of what went wrong? And, if so, who should do it?
We’re not even at Thanksgiving, and Democrats just can’t stop losing our minds every fifteen minutes. We really need to pace ourselves, or, you know, for FFS, just grab a grip. Realize that this is how elections go. At least for the next two years, they’re going to have the opportunity to write the narrative and to drive the narrative.
Trump is assembling a cabinet of people many Democrats find deeply objectionable. How do you think Democrats should respond?
I’m just saying, buckle up and pack a lunch, because it’s going to be four years of this. And if you have a choice to freak out, you know, on the hour, then that’s your right. But I will not. I’m not that dude, and I’m not that Democrat. I’m going to pick my fights. If you freak out on everything, you lose any kind of relevance.
. . . One analysis of the election that we’ve heard from your colleague Senator Bernie Sanders is that Democrats failed to recognize how bad people were feeling about the economy, about the country generally, and failed to name a villain. Do you agree with that analysis?
I do not.
Why?
I think there was a lot of other issues. I would even describe them as cultural. Walk around in Scranton, tell me what an oligarch is. I think it’s like, “Whose argument is the closest match to the kinds of things that are important to me?” And I think some of them are rooted in gender and worldviews, and even backlash of things like cancel culture.
I witness people, now there’s specific kinds of clothing. They call it Blue Collar Patriots. I’m willing to bet you know who they’re voting for.
And why is that? I don’t think it’s because we haven’t talked enough about oligarchs, and how it’s rigged.
Here’s the giant Fetterman with Israeli President Isaac Herzog:
Maayan Toaf, CC BY-SA 3.0, via Wikimedia CommonsHere’s Fetterman on the Joe Rogan show if you have two hours to spare after dinner. This has to be better than football!
Gravitational lensing is a concept where dark matter distorts space revealing its presence through its interaction with light. ESA’s Euclid mission is mapping out the gravitational lensing events to chart the large scale structure of the Universe. Euclid is also expected to discover in excess of 170,000 strong gravitational lensing features too. AI is expected to help achieve this goal but machine learning is still in its infancy so human beings are likely to have to confirm each lens candidate.
Gravitational lensing was originally predicted by Einstein’s theory of general relativity. The theory proposed that a massive object such as galaxy or even a cluster of galaxies, would warp and bend space, thus magnifying light from more distant objects. Light travels through space in a straight line but bend space, for example in a gravitational field, and light appears to bend too. The lensing effect can result in various visual phenomenon such as arcs, multiple lensed images or even a complete ring around an object which became known as an Einstein ring.
The picture shows Abell 2218, a rich galaxy cluster composed of thousands of individual galaxies. It sits about 2.1 billion light-years from the Earth (redshift 0.17) in the northern constellation of Draco. When used by astronomers as a powerful gravitational lens to magnify distant galaxies, the cluster allows them to peer far into the Universe. However, it not only magnifies the images of hidden galaxies, but also distorts them into long, thin arcs. Several arcs in the image can be studied in detail thanks to Hubble’s sharp vision. Multiple distorted images of the same galaxies can be identified by comparing the shape of the galaxies and their colour. In addition to the giant arcs, many smaller arclets have been identified.Observing gravitational lensing gives a great insight into the distribution of matter across the universe. One probe which is exploring and studying the phenomenon is the Euclid mission. It was launched by the European Space Agency in 2023 to study the lensing events. Studying the lenses and analysing the resultant images across billions of visible galaxies allows for a detailed map to be built revealing the distribution of both dark matter and dark energy. This will help us to understand how dark matter shapes structures in the Universe and how dark energy drives the accelerated expansion of the universe.
Artist impression of the Euclid observatory. Credit: ESAOne aspect of the Euclid mission is the Euclid Wide Survey (EWS) which will observe 14,000 deg2 of the sky hunting for gravitational lenses. It is predicted the study will find 170,000 strong gravitational lenses (a strong gravitational lens produces a very strong distorted image while weak events are much more subtle.) The challenge is in identifying the lensing features which is challenging for human beings to process that amount of data.
Machine learning algorithms have been used previously to detect the strong lenses including the use of convolutional neural networks (CNNs.) These networks are often used in imaging analysis and comprise of several layers. An image would be used as input, it would be analysed through several different layers but must achieve a specified threshold before being passed on to the next. Eventually, if it successfully passes through all layers of analysis, a strong gravitational lens should be identified.
A team of researchers led by R. Pearce-Casey from the Open University in the UK has identified that the machine learning technology can present a number of false positives still requiring human visual inspection of the results. Their research aims to identify a higher quality CNN model and strong starting point to improve the output of the CNN based detection process. To test their approach they took images from the Euclid Early Release Observation run of the Perseus field and applied their CNN analysis. The results were promising however when applied to real Euclid EWS data the results still required human verification.
NGC 1270 is just one member of the Perseus Cluster, a group of thousands of galaxies that lies around 240 million light-years from Earth in the constellation Perseus. This image, taken with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini North telescope, one half of the International Gemini Observatory, captures a dazzling collection of galaxies in the central region of this enormous cluster. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/ Image Processing: J. Miller & M. Rodriguez (International Gemini Observatory/NSF NOIRLab), T.A. Rector (University of Alaska Anchorage/NSF NOIRLab), M. Zamani (NSF NOIRLab) Acknowledgements: PI: Jisu Kang (Seoul National University)The team are now exploring if a second filtering stage ahead of CNN analysis may be needed to fine tune the identification of strong lenses. They conclude that currently, there is no alternative to the good old fashioned human eyeball to confirm the existence of strong and especially weak gravitational lenses to eradicate the false positives from machine learning.
The post Euclid Could Find 170,000 Strong Gravitational Lenses appeared first on Universe Today.
Subsurface oceans of liquid water are a common feature of the moon’s of Jupiter and Saturn. Researchers are exploring whether the icy moons of Uranus and Neptune might have them as well. Their new paper suggests future missions to the outer Solar System could measure the rotation of the moons and detect any wobbles pointing to liquid oceans. Less wobble means the moons is mostly solid but large wobbles can indicate ice floating on an ocean of liquid.
Uranus is the 7th planet in the Solar System, classed as an ice giant and measures 50,724 km across. It has 27 known moons each of which have very unique and distinct characteristics. They tend to be categorised into three different groups; large moons, small inner moons and those which are irregular outer moons. The largest moon of Uranus is Titania which is composed broadly of equal parts rock and ice. The surface has a mix of old craters and younger geological features, fault lines and even cryovolcanism.
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) Feb. 6, 2023, reveals stunning views of the planet’s rings. Credit: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI).Icy moons are fascinating to explore largely because of the potential for finding life! Jupiter’s moon Europa is a great example. Beneath the icy crust which is 30 km thick exists an ocean thought to be 100 km deep. The ocean is kept liquid by internal heat generated from the tidal interactions with Jupiter. It’s hypothesised that subsurface oceans like these may harbour life. On Earth we have found life in the deepest crevices of our oceans, drawing energy not from sunlight but from hydrothermal vents. Such features may well exist on Europa and other icy moons making them great places to detect life.
Europa captured by JunoMuch has been learned about the outer Solar System largely from the Voyager and Pioneer probes. Exploring the region nearly 40 years ago, the probes were equipped with fairly limited imaging systems. NASA is now planning on sending another probe to Uranus with better technology and learn more about its icy moons.
Illustration of voyager 1A team of researchers based at the University of Texas Institute for Geophysics are gearing up for the mission by developing a technique to detect subsurface oceans using only cameras! Their approach relies upon capturing high resolution images of the moons an analysing them for any wobbles as the moon spins.
From this information, it’s possible to work out how much ice, water and rock is inside. If the wobble is only slight then it’s likely the interior of the moon is solid whereas a much larger amplitude to the wobble could mean ice is floating around on a subsurface ocean. In reality a large wobble only means movement of under 100 metres. This is within the capability of modern technology to detect.
The technique that has been developed by planetary scientist Doug Hemingway and team has been run through some theoretical calculations. They found that for example, if Ariel wobbles by about 100 metres then it is likely to have an ocean 160 km thick surrounded by an ice shell around 30 km thick. Smaller oceans are detectable but the work the team have undertaken will help give mission designers guidelines to maximise the outcome of the scientific goals.
Source : Uranus’s swaying moons will help spacecraft seek out hidden oceans
The post Uranus’s Wobbling Moons Could Point to Oceans Under the Ice appeared first on Universe Today.
Extended periods spent in microgravity can take a serious toll on the human body, leading to muscular atrophy, bone density loss, vision problems, and changes to the cardiovascular, endocrine, and nervous systems. At the same time, however, scientists have found that microgravity may play a key role in the future of medicine. This includes bioprinting in space, where cultured cells are printed out to form organic tissues and organs without the need for grafts. Printing in microgravity also ensures that fragile cell structures do not collapse due to pressures caused by Earth’s gravity.
However, space medicine may also have applications for stem cell research, which also benefit from a microgravity environment. Stem cells have countless applications in medicine because of their ability to quickly replicate and differentiate into many different types of cells. Based on experiments carried out aboard the International Space Station (ISS), researchers from the Mayo Clinic in Florida determined that these abilities are enhanced when grown in space. These findings could have significant benefits in the study of disease prevention and treatment on Earth, as well as medical treatments delivered in space.
The research was conducted by Fay Ghani and Abba C. Zubair, two pathologists with the Mayo Clinic’s Center for Regenerative Biotherapeutics and the Department of Laboratory Medicine and Pathology. The paper detailing their experiment and findings was recently published in NPJ Microgravity. For their experiment, the team specifically examined the behavior of several types of adult stem cells, which manage normal wear and tear on the body. These cells are often grown by scientists for the sake of disease research and developing new therapies.
Several experiments have been run on the ISS. Credit: Ghani & Zubair, NPJ Microgravity (2024)The process is challenging, expensive, and takes a long time. But as Zubair said in a recent interview with ScienceAlert!, the process could be simplified by growing them in space-based labs:
“Studying stem cells in space has uncovered cell mechanisms that would otherwise be undetected or unknown within the presence of normal gravity. That discovery indicates a broader scientific value to this research, including potential clinical applications. The space environment offers an advantage to the growth of stem cells by providing a more natural three-dimensional state for their expansion, which closely resembles growth of cells in the human body.
Ghani and Zubair experimented with many types of adult stem cells and obtained positive results for them all. This included general improvements in cell expansion and stability of replication, which continued after the cell cultures were returned to Earth. In particular, they noted improvements with mesenchymal stem cells (MSCs), a class of multipotent stromal cells that can differentiate into bone, cartilage, muscle, and fat cells – which gives rise to marrow adipose tissue, thus increasing bone density.
When grown in microgravity, these cells were shown to be better at managing immune system responses and reducing inflammation. “That’s in comparison to the two-dimensional culture environment available on Earth that is less likely to imitate human tissue,” said Zubair. “The space research conducted so far is just a starting point. A broader perspective about stem cell applications is possible as research continues to explore the use of space to advance regenerative medicine.”
One of the experiments conducted aboard the ISS. Credit: Mayo ClinicWhile there is still a significant amount of research and testing to be done, these results are very promising and indicate that stem cells can be grown faster and in greater numbers in microgravity. Ghani and Zubair are confident that space-grown stem cells will help treat the most common causes of mortality here on Earth, including heart disease, stroke, cancer, and neurodegenerative diseases like dementia, Parkinson’s disease, Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS).
Further Reading: ScienceAlert!, NPJ Microgravity
The post Stem Cells Grown in Space Could Revolutionize Medicine Here on Earth appeared first on Universe Today.