A few readers have asked how they can donate to the Jerry Coyne/Honey the Duck Evolutionary Biology Research Fund, which I wrote about yesterday. It is to fund the research of University of Chicago biology students working on some aspect of organismal evolution (more described at link above). If you wish to make a donation, no matter how small, please email me and I will send you instructions. I assure you that any donations will be used nearly in full to fund research.
I thank you, and Honey thanks you!
Yes, that’s Honey and one of her broods above.
Let's see. Let's put the chaise longues facing the ice berg. The blue and white of the ice are a nice focal point. We can alternate the chaise longue with Adirondacks for those that don't want to put up their feet. We should also have a few ottomans as well. Looks good. The band sounds nice; I always did like Autumn Dream.
The post Acupuncture Paradox? first appeared on Science-Based Medicine.It’s no surprise that the future of humanity and even Earth’s biodiversity hangs in the balance and so the race to preserve life on our planet has never been more urgent. Species and ecosystems are vanishing at alarming rate so teams of scientists are turning to cutting-edge solutions to safeguard the natural world for future generations. A new paper explores cryopreservation as one solution, a technology that allows living cells to be frozen and stored for centuries, preserving genetic material and even entire organisms. This approach comes with its own challenges but as we explore this innovative frontier, it becomes clear that reimagining how and where we protect life is essential to securing the planet’s biological legacy.
Jupiter’s moon Europa is a fascinating target for study. Data from the Galileo spacecraft’s Solid State Imager showed that Europa, one of Jupiter’s moons, has a geologically young and varied surface featuring formations like pits, spots, and cryolava domes. A new study has revealed more about the composition of the cryovolcanoes and their domes but also and more excitingly perhaps that they may even provide some form of habitation as we explore the Solar System!
The search for life involves the most sophisticated observational machines known to humanity. They peer out across the light-years, looking for some proof - any proof - that other life exists, out there. What if, despite all our efforts, those observations turn up NO evidence of life elsewhere in our Milky Way Galaxy?
Titan is Saturn's largest moon, with a thick atmosphere and liquid methane lakes, making it the only place besides Earth with stable liquid on its surface. A new paper reveals how a team of researchers have compared real craters on Titan with computer-simulated ones to determine the thickness of its icy shell. This information is important for understanding Titan's interior structure, how it evolved thermally, and its potential to produce organic molecules, making it significant for astrobiological research.
NGC 1514 is a planetary nebula about 1500 light years away. William Herschel discovered it in 1790, and its discovery made him rethink the nature of nebulae. It's been imaged many times by modern telescopes, and each time a more capable one revisits it, astronomers learn more about it. The JWST is the latest to observe the curious nebula, and its observations help explain the unusual object.
We've long known that black holes can produce powerful jets of ionized gas. These jets stream away from the black hole at nearly the speed of light. Jets produced by supermassive black holes are so powerful they are seen as quasars from billions of light-years away. But when you think about it, jets are a bit counterintuitive. Black holes trap and consume material through their tremendous gravity, so how can they push streams of material away? A recent study in Publications of the Astronomical Society of Japan shows how it works.