You are here

News Feeds

Astronomers Find the Longest Black Hole Jets Ever Seen

Universe Today Feed - 5 hours 36 min ago

Black holes often appear in science fiction movies, largely because elements of their existence are still a mystery. They have fascinating impacts on the surrounding region of space too with distortions in space and time high on the list. A team of astronomers have found a supermassive black hole with twin jets blasting out an incredible 23 million light years, the longest yet. To put this into context, if you lined up 140 Milky Way galaxies side by side, then that’s the length of the jet! 

The presence of mass in the Universe distorts space-time in its vicinity and the more massive, the greater the distortion. Black holes are regions where gravity is so strong that nothing, not even light can escape. They form when a massive star runs out of fuel in the core and collapses under its own gravity. The process creates a point of infinite density known as a singularity. Surrounding the singularity at a distance that depends on the properties of the progenitor star, is the event horizon. If matter of any sort, even a passing spacecraft, gets dragged in through the event horizon then it is never able to escape. 

After the death of a massive, spinning star, a disk of material forms around the central black hole. As the material cools and falls into the black hole, new research suggests that detectable gravitational waves are created. Ore Gottlieb

One of the properties of a black hole are powerful jets, high speed streams of particles ejected from the regions around a black hole. The material ejected never quite reaches the event horizon but instead has been ejected from within the accretion disk. The magnetic fields of a black hole and the rotation of the disks of heated gas and dust can launch jets from the polar regions. They can travel at speeds near the speed of light and can shoot across thousands and millions of kilometres of space. The exact mechanisms of the jets are still not well understood. 

Astronomers observing with LOFAR (the Low Frequency Array) radio system spotted a jet so massive that its the equivalent of 140 Milky Way galaxies lined up side by side! For comparison the jet emanating from Centaurus A at the centre of our Galaxy spans about 10 Milky Way’s! It’s been nicknamed Porphyrion after the mythological giant in Greek culture. Dating back to a time when the universe was 6.3 billion years old, the jet has been found to be producing power equivalent to trillions of Suns!

The LOFAR ‘superterp’, part of the core of the extended telescope located in the Netherlands. Credit: LOFAR/ASTRON

The team that have studied the jet suggest that if giant jets like this were common in the early universe then they may well have been an influential force in the formation of galaxies. Modern jets seen in the nearby universe (and therefore at a later era in the evolution of the universe) seem to be much smaller by comparison. The conclusion is that perhaps the giant jets would have connected and fed energy and material to other nearby galaxies, driving their evolution. 

The survey undertaken by LOFAR revealed more than 10,000 of these megajets. Previous studies revealed only a few hundred large jets suggesting they were more rare but this latest research shows otherwise. It was a real labour of love though as the team searched radio images by eye, used machine-learning tools to scan the images and even enlisted citizen scientists around the world to help. Their paper was published in the Astronomy and Astrophysical journal. 

What of Porphyrion? The team followed up with observations with the Giant Metrewave Radio Telescope in Kitt Peak and the W. M. Keck Observatory in Hawaii to reveal the host galaxy 7.5 billion light years away. 

Source : Gargantuan Black Hole Jets Are Biggest Seen Yet

The post Astronomers Find the Longest Black Hole Jets Ever Seen appeared first on Universe Today.

Categories: Science

Second Generation Starlinks are 32 Times Brighter in Radio Wavelengths

Universe Today Feed - Fri, 09/20/2024 - 4:03pm

Global internet access does seem like a worthy enterprise yet the rise of satellite megaconstellations there is a danger of the night sky becoming ruined. Astronomers the world over are keeping an eye on the impact these satellites are having on the night sky. Until recently the concerns have been relating to the reflection of visible light against the sky hindering night time observations. A recent study shows that the second-generation Starlink satellites leak 32 times the radio signal than the previous models. Are their presence putting at risk the radio sky now too?

The starlink satellites are the brainchild of SpaceX to provide high-speed broadband internet to every corner of the planet. The constellation of satellites consists of thousands of small satellites measuring just 2.8 metre in length. They form a network that can transmit data quickly around the planet offering high speed internet which is far more reliable than traditional satellite systems. The goal is to provide high speed connectivity to places where fibre or traditional infrastructure is difficult or too costly. As it expands though there will be more and more satellites in orbit. 

An artist’s conception shows Starlink satellites in orbit. Credit: SpaceX

It’s not just SpaceX that is causing the problem though. Since 2019 other companies have been getting in on the act with organisations like OneWeb too having launched hundreds of thousands of satellites. The plan is for organisations like these to launch in excess of 100,000 satellites. If the rise in megaconstellations like these rise then the emissions (visible, radio or otherwise) could very easily make astronomical observations from the surface of Earth difficult if not impossible.

During the last year, observations with the Low Frequency Array (LOFAR) revealed that the Starlink satellites were emitting radio waves. Astronomers were concerned that the unintentional waves could have a negative impact on radio observations. As SpaceX expand their network with a second generation of satellites, their ‘V2-mini’ modules the risks seem to be increasing. New LOFAR observations have shown that the new satellites are producing up to 32 times more radio emissions than the earlier satellites! Anyone observing the universe in radio waves at the time of their passing is likely to receive a blinding radio signal that would ruin any observations. 

The LOFAR ‘superterp’, part of the core of the extended telescope located in the Netherlands. Credit: LOFAR/ASTRON

Putting the radio emissions into context, the new satellites are emitting radio waves 10 million times brighter than that detected by the faintest astronomical object detected by LOFAR so far! The discovery highlights the need for control and regulations around satellites and their emissions, intended or otherwise. Left unchecked then the future of astronomical observations will be highly compromised.

ASTRON operates LOFAR which is one of the most sensitive low frequency telescopes in the world. It’s only possible because it operates from the Netherlands which is one of the most densely populated countries in Europe. Despite the high population density, the national organisations of Netherlands co-operate and consult with ASTRON to safeguard the future of radio astronomy. We just need other organisations like SpaceX and OneWeb to jump on board to ensure our view of the universe isn’t lost for ever. 

Source : Second-Generation Starlink Satellites Leak 30 Times More Radio Interference, Threatening Astronomical Observations

The post Second Generation Starlinks are 32 Times Brighter in Radio Wavelengths appeared first on Universe Today.

Categories: Science

There’s Water All Over the Moon

Universe Today Feed - Fri, 09/20/2024 - 2:05pm

When you look at the Moon, you don’t see any water on its surface. That doesn’t mean there isn’t any. In fact, there’s a lot of “wetness” on the Moon, but it’s in places and forms we can’t see. Understanding where all those resources are is the subject of a study based on NASA’s Moon Mineralogy Mapper (M3) data taken from aboard the Chandrayaan-1 spacecraft.

The analysis performed by a team led by Planetary Science Institute senior scientist Roger Clark shows that there are many sources of water and a group of chemicals called “hydroxyls” (OH). Water lies hidden in ice deposits in shaded areas, and inside enriched rocks.

Image showing the distribution of surface ice (which could supply water) at the Moon’s south pole (left) and north pole (right), detected by NASA’s Moon Mineralogy Mapper instrument. Credits: NASA

Hydroxyls are interesting. They form as solar protons interact with electrons on the Moon’s surface. That creates hydrogen atoms which hook up with oxygen atoms found in silicates and other oxygen-bearing molecules in the lunar regolith. Together, the hydrogen and oxygen make hydroxyl molecules, which are a component of water. While it would take some work, mining those “raw materials” for water on the Moon could be a huge boost for future crewed missions, according to Clark.

“Future astronauts may be able to find water even near the equator by exploiting these water-rich areas. Previously, it was thought that only the polar region, and in particular, the deeply shadowed craters at the poles were where water could be found in abundance,” said Clark. “Knowing where water is located not only helps to understand lunar geologic history but also where astronauts may find water in the future.”

How They Identified Lunar Water Sources

Searching out sources of lunar water requires special instruments. This is where the Chandrayaan mission and NASA’s mineralogy mapper data came in handy. Clark and his team zeroed in on a set of data taken by the lander’s imaging spectrometer from 2008-2009. This infrared spectroscopy data contains the spectral fingerprints of both water and hydroxyl in sunlight reflected from the Moon’s surface. The M3 instrument dissected the light into 85 different visible and infrared “colors”. That’s how they were able to spot the distinctive hints of water and hydroxyls across much of the Moon.

The team also looked at the location and geologic contexts of water and hydroxyl distribution. They also had to take into account the “lifetime” of these resources on the Moon. Interestingly, water gets slowly destroyed over time. Hydroxyl, however, lasts much longer. So, for example, if a crater smacks into the lunar surface, the “wet” rocks it “digs up” will lose that content over time through the action of the solar wind. The result is a diffuse layer or “aura” of hydroxyls that remain behind. In other places, solar wind protons that collide with the surface contribute to a thin layer or “patina” of hydroxyls on the surface. The hydroxyls last much longer and exist on the Moon up to millions of years.

“Putting all the evidence together, we see a lunar surface with complex geology with significant water in the sub-surface and a surface layer of hydroxyl. Both cratering and volcanic activity bring water-rich materials to the surface, and both are observed in the lunar data,” Clark said.

Near-infrared image of the Moon’s surface by NASA’s Moon Mineralogy Mapper on the Indian Space Research Organization’s Chandrayaan-1 mission. The mapper helped identify water- and hydroxyl-rich areas on the lunar surface. Image credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS Using Precious Lunar Resources

Lunar rocks may well help supply water to future visitors to the Moon. There are two kinds of rocks there. The dark mare rocks are mainly basaltic (like Hawaiian lava). The other type is the anorthosite rock. It exists in various places, including the lunar highlands. The anorthosites are relatively “wet” while the basalts remain very dry. The two rock types also contain hydroxyls bonded to different minerals.

The water-rich anorthosites should be a target for harvesting by lunar astronauts. To get a good supply, you have to heat the rocks and soils. The result of that process could be a long-lasting water supply. You could also get it by using methods to create chemical reactions that liberate hydroxyl and combine four hydroxyls to create oxygen and water.

Of course, a more immediate source lies at the poles. That’s where ice lies hidden inside shaded crater walls or under the surface, preserved for millions of years. That source is likely more easily harvested, but you still have to transport the water to other lunar regions. The downsides of getting water from rocks are the expense and the energy required to heat them for extraction. NASA and other agencies (such as the Chinese space agency) are looking at all the methods of producing supplies for upcoming missions. Studying the locations of ice deposits and hydroxyls is just one part of a larger “search for water” that will benefit future lunar bases.

For More Information

Sources of Water and Hydroxyl are Widespread on the Moon
The Global Distribution of Water and Hydroxyl on the Moon as Seen by the Moon Mineralogy Mapper (M3)

The post There’s Water All Over the Moon appeared first on Universe Today.

Categories: Science

New data science tool greatly speeds up molecular analysis of our environment

Computers and Math from Science Daily Feed - Fri, 09/20/2024 - 1:08pm
A research team has developed a computational workflow for analyzing large data sets in the field of metabolomics, the study of small molecules found within cells, biofluids, tissues, and entire ecosystems.
Categories: Science

Io’s Volcanoes are Windows into its Hot Interior

Universe Today Feed - Fri, 09/20/2024 - 12:35pm

NASA’s Juno spacecraft was sent to Jupiter to study the gas giant. But its mission was extended, giving it an opportunity to study the unique moon Io. Io is the most volcanically active body in the Solar System, with over 400 active volcanoes.

Researchers have taken advantage of Juno’s flybys of Io to study how tidal heating affects the moon.

In recent months, Juno performed several flybys of Io, culminating in one that brought the spacecraft to within 1500 km of the surface. This gave Juno unprecedented close-up views of the volcanic moon. One of its instruments, the Jovian Infrared Auroral Mapper (JIRAM), is an infrared spectrometer, and its data is at the heart of new research into Io’s volcanic activity and how tidal heating drives it.

The new research letter, “JIRAM Observations of Volcanic Flux on Io: Distribution and Comparison to Tidal Heat Flow Models,” was published in the journal Geophysical Research Letters. Madeline Pettine, a doctoral student in astronomy at Cornell University, is the lead author.

Though Io is dead, the tidal heating that keeps it warm could contribute to habitability elsewhere.

“Studying the inhospitable landscape of Io’s volcanoes actually inspires science to look for life,” said lead author Pettine.

“It’s easier to study tidal heating on a volcanic world rather than peering through a kilometers-thick ice shell that’s keeping the heat covered up.”

Madeline Pettine, Cornell University

Io is one of the four Galilean moons. The other three, Callisto, Ganymede, and Europa, are all suspected of having liquid oceans under frozen layers of surface ice. If these oceans truly exist, they could potentially support life. Jupiter’s tidal heating provides the heat to keep those oceans warm. Io is valuable scientifically because we can witness the effects of tidal heating on its surface.

Juno isn’t the only spacecraft to have visited Jupiter’s moon Io. This global view of Io was obtained during the tenth orbit of Jupiter by NASA’s Galileo spacecraft. It’s a false colour image that highlights differences on Io’s surface. Image Credit: NASA

“Tidal heating plays an important role in the heating and orbital evolution of celestial bodies,” said co-author Alex Hayes, the Jennifer and Albert Sohn Professor of Astronomy in the College of Arts and Sciences at Cornell. “It provides the warmth necessary to form and sustain subsurface oceans in the moons around giant planets like Jupiter and Saturn.”

Io’s volcanoes aren’t distributed evenly on its surface. The majority of them are in the equatorial region. However, in this work, the researchers found that the volcanoes on Io’s poles may act to regulate the moon’s interior temperature.

“I’m trying to match the pattern of volcanoes on Io and the heat flow that they’re producing with the heat flow we expected from theoretical models,” said Pettine.

Jupiter is the most massive planet in the Solar System and its gravitational pull is second only to the Sun’s. Jupiter’s powerful gravity does more than dictate Io’s orbit. It warps the moon and forces it to deform, generating heat.

This simple schematic shows how a planet can create tidal heating on an orbiting moon. The stretching and heating are most extreme when the moon is at its pericenter, the closest distance to the planet. Image Credit: Caltech.

“The gravity from Jupiter is incredibly strong,” Pettine said. “Considering the gravitational interactions with the large planet’s other moons, Io ends up getting bullied, constantly stretched and scrunched up. With that tidal deformation, it creates a lot of internal heat within the moon.”

Io has no ocean, so the heat melts rock, creating a likely magma ocean inside the moon. That magma works its way up through the surface, erupting as volcanoes and lava flows. The gases from the magma colour the surface of the moon in reds, yellows, and browns.  

To understand what’s happening inside Io, Pettine and her colleagues worked with a mathematical equation called spherical harmonic decomposition. This equation allows scientists to analyze data from a spherical surface and break it down, revealing patterns and important features.

Previous research shows that most of Io’s volcanic activity is in its equatorial region, although some volcanoes have been detected on its poles. In this work, it revealed systems of bright volcanoes at high latitudes.

“Our observations confirm previously detected systems of bright volcanoes at high latitudes,” the authors write. “While our map agrees with previous studies that suggest that low?to mid?latitude areas see the highest areas of volcanic activity, our map suggests that the poles of Io are comparably active to the equator.”

This figure’s perspective shows the sub-Jovian, north-polar view of Io in the left column and the anti-Jovian, south-polar view of Io in the right column. The topmost row shows the coverage map achieved for JIRAM during this study. The second row is a global map of volcanic flux. The hot spot in the north polar region is clear. Image Credit: Pettine et al. 2024.

Pettine and her co-researchers compared their global heat flux maps with three different models that attempt to explain what’s going under Io’s surface: the Deep Mantle model, the Asthenospheric model, and the Global Magma model.

The Deep Mantle Model says that tidal heating keeps a large portion of the mantle in a molten state. The Asthenospheric Model says that less of the mantle is molten and that only the asthenosphere is in a molten state due to tidal heating. This is more similar to Earth. The Global Magma Ocean model is a more extreme interpretation of the data and says that a greater portion of Io’s interior is molten, perhaps extending from just below the surface to greater depths.

This figure shows what Io’s surface heat flux should look like for three different interior models. Image Credit: Pettine et al. 2024.

The researchers also created a complete global map of heat flux produced by volcanic hot spots. “Viewing this flux on both a linear and a logarithmic scale better illustrates individual volcanic behaviour and global heat flow variations, particularly the lowest-flux regions,” the authors write.

“Our study finds that both poles are comparably active and that the observed flux distribution is inconsistent with an asthenospheric heating model, although the south pole is viewed too infrequently to establish reliable trends,” the authors explain.

These global volcanic flux maps show the average flux in milliwatts per square meter. The top is on a linear scale, while the bottom is on a logarithmic colour scale. The coloured bars and the line plots beside each map show the average flux projected horizontally (to the right of each map) and the average flux projected vertically (below each map) to show trends in flux by latitude and longitude. Image Credit: Pettine et al. 2024.

The researchers say that their heat flux maps don’t favour any of the models. “Using spherical decomposition, we find that the distribution of flux is much more uniform than in-line with any of the models,” they write.

For now, a more complete understanding of Io’s tidal heating and volcanic activity is elusive. Juno’s JIRAM observations are just a snapshot of the moon. Over longer time periods, the heat maps will look different and may support different models and conclusions.

“I’m not solving tidal heating with this one paper,” said Pettine. “However, if you think about icy moons in the outer solar system, other moons like Jupiter’s Europa, or Saturn’s Titan and Enceladus, they’re the places that if we’re going to find life in the solar system, it will be one of those places.”

A better understanding of tidal heating will do more than explain aspects of our own Solar System. It may help us understand habitable zones in other solar systems and how exomoons might be heated by giant exoplanets.

Artist’s illustration of a large exomoon orbiting a large exoplanet. While we have no way of observing exomoons, that day will come soon enough. A better understanding of tidal heating will help us understand what we will see. Image Credit: NASA/ESA/L. Hustak

That’s why, although Jupiter’s icy moons are prime targets for exploration, with two missions heading to study Europa, Ganymede, and Callisto, we need to keep a scientific eye on Io.

“We need to know how the heat is being generated,” Pettine said. “It’s easier to study tidal heating on a volcanic world rather than peering through a kilometers-thick ice shell that’s keeping the heat covered up.”

The post Io’s Volcanoes are Windows into its Hot Interior appeared first on Universe Today.

Categories: Science

Deforestation is partly to blame for Amazon's worst-ever drought

New Scientist Feed - Fri, 09/20/2024 - 9:39am
Forest loss is thought to have played a part in record low rainfall across South America this year, in a sign that environmental destruction is accelerating climate collapse
Categories: Science

BESSY II: Heterostructures for spintronics

Computers and Math from Science Daily Feed - Fri, 09/20/2024 - 9:22am
Spintronic devices work with spin textures caused by quantum-physical interactions. Scientists have now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
Categories: Science

Astronauts may need medical evacuation from one-third of moon missions

New Scientist Feed - Fri, 09/20/2024 - 9:18am
Medically evacuating an astronaut from space is difficult and expensive, and a new model predicts that one in three long-duration moon missions may require it
Categories: Science

Demand-side actions could help construction sector deliver on net-zero targets

Computers and Math from Science Daily Feed - Fri, 09/20/2024 - 8:27am
Researchers used a detailed mathematical model to demonstrate that the construction sector in the UK and Europe could almost eliminate its carbon emissions by 2060. This could be achieved through using state-of-the-art energy efficiency technologies to renovate existing properties and construct new ones.
Categories: Science

New testing system using Janus particles rapidly and accurately detects COVID-19

Matter and energy from Science Daily Feed - Fri, 09/20/2024 - 8:26am
A research group has developed a new COVID-19 testing system using Janus particles -- microparticles with two sides possessing distinctive molecular properties. These particles are engineered to bind specifically to target antigens, such as viral proteins, creating a low-cost, accurate, and rapid means of testing for viral diseases. The system's versatility means it can potentially be used to test for other diseases and biomarkers linked to other conditions.
Categories: Science

How can we make the best possible use of large language models for a smarter and more inclusive society?

Computers and Math from Science Daily Feed - Fri, 09/20/2024 - 8:24am
Large language models (LLMs) have developed rapidly in recent years and are becoming an integral part of our everyday lives through applications like ChatGPT. An article explains the opportunities and risks that arise from the use of LLMs for our ability to collectively deliberate, make decisions, and solve problems.
Categories: Science

Could Stars Hotter Than the Sun Still Support Life?

Universe Today Feed - Fri, 09/20/2024 - 8:22am

Although most potentially habitable worlds orbit red dwarf stars, we know larger and brighter stars can harbor life. One yellow dwarf star, for example is known to have a planet teaming with life, perhaps even intelligent life. But how large and bright can a star be and still have an inhabited world? That is the question addressed in a recent article in the Astrophysical Journal.

Stable main-sequence stars such as the Sun are categorized by color or spectral type, with each type assigned a letter designation. For historical reasons the categories aren’t alphabetical. Red dwarf stars, the coolest stars with the smallest mass, are M type. Then with each brighter, bluer, and more massive category is K, G, F, A, B, and finally O. The Sun falls into the G category as a yellow star. Each spectral type is then broken into smaller sections, numbered 0 – 9. The Sun is G2 star because it is at the warmer end of G-type stars.

As you go up the scale, the potentially habitable zone shifts farther from the star but also gets larger. That makes it more likely for a planet to be in the zone. But larger stars also have shorter lives, which might not give life enough time to evolve on a world. Then there are other factors that can be harmful for life. The largest stars emit a tremendous amount of ionizing radiation, which could strip planets of their atmospheres, or sterilize the surface of a planet. Because of this, the largest stars of the B and O types aren’t likely to harbor life.

How habitable zones differ by spectral type. Credit: NASA, ESA and Z. Levy (STScI)

But what about F-type stars? They are a bit brighter than the Sun and more white than yellow in color. They are also stable for around 4 billion years, which is long enough for life to evolve and thrive. And they also emit more ultraviolet radiation, which may have helped life arise on Earth. What are the odds of a habitable F-type planet?

To answer this question, the team went through the database of known exoplanets. About 80 F-type main-sequence stars are known to have at least one planet. Of those, 18 systems have exoplanets that spend at least part of their orbit in the habitable zone of the star. And in one case, the exoplanet 38 Virginis b, the planet is always in the habitable zone. Statistically around 5% – 20% of F-type stars have potential for life.

What’s interesting about 38 Virginis b is that it is a gas giant about 4 times more massive than Jupiter, so it isn’t likely to be habitable. But it could have Earth-sized moons, similar to the Galilean moons of Jupiter. A world orbiting a Jovian planet could be a perfect home for life.

F-type stars only comprise 3% of main-sequence stars in the Milky Way, and it’s possible that their excess UV light could rule out habitable worlds. But alien astronomers might make similar arguments about G-type stars like the Sun. As this study shows, we shouldn’t rule out the Sun’s brighter cousins in the search for living worlds.

Reference: Patel, Shaan D., Manfred Cuntz, and Nevin N. Weinberg. “Statistics and Habitability of F-type Star–Planet Systems.” The Astrophysical Journal Supplement Series 274.1 (2024): 20.

The post Could Stars Hotter Than the Sun Still Support Life? appeared first on Universe Today.

Categories: Science

New Scientist Live: What we are most excited about seeing this year

New Scientist Feed - Fri, 09/20/2024 - 7:00am
Here’s what members of the New Scientist editorial team are keenest to catch at the world’s greatest festival of ideas and discovery, which runs from 12 to 13 October
Categories: Science

Cancelling the Pop Culture of Yesteryear

Skeptic.com feed - Fri, 09/20/2024 - 7:00am

I recently wrote a piece for Skeptic titled “Ranking Presidents: Does It Make Any Sense?”, in which I outlined three reasons why ranking Presidents against one another is a fool’s errand: presentism, the evolving role of the presidency, and sui generis.1 The current trend of the first of these criteria, presentism, becomes problematic when applied to entertainment made for previous generations. Viewing and evaluating the culture of the past through a contemporary lens has led to erasing history in at least three relatively recent incidents. This is, I believe, a slippery slope toward censorship and a missed opportunity for valuable lessons about our collective past.

In 1991, Disney released a video version of their 1940 masterpiece Fantasia, describing it as “a meticulously restored version of the original, full-length film.” It wasn’t, though. The version Disney released omitted an original scene in which a Black centaurette named Sunflower is shown shining shoes of a White centaur.2 Seen today, Sunflower is a patently offensive stereotype.3 Ten years later Disney released the censored version for the film’s 60th anniversary DVD.4 Disney’s use of racist stereotypes is not limited to Fantasia. In varying degrees, such tropes are seen in Dumbo (1941),5 Peter Pan (1953),6 The Aristocats (1970),7 and Aladdin (1992).8

In 2020, the company (admirably, in my view) took steps toward addressing this controversy by adding disclaimers to their films on their streaming services, noting the “harmful impact” of racist stereotypes. Unlike the quiet actions the company took censoring the re-releases of Fantasia, the films are viewable in their original forms.

This begs the question: If the racism was so apparent, why weren’t these films decried upon initial release? The answer is they weren’t considered offensive by the public at the time, and applying today’s attitudes toward race crystallizes the fallacy of presentism.

In 2014, Ruth Wise, professor emerita of Yiddish and Comparative Literatures at Harvard, criticized Fiddler on the Roof (1971) for sacrificing Jewish identity to make the musical more universally appealing.9 The problem with Wise’s argument is (again) presentism. In the early 1970s, M*A*S*H writers employed rape jokes,10 and America’s most popular sitcom (All in the Family) featured a working-class bigot who employed racial slurs for laughs.11 John Lennon released a song titled “Woman is The (N-word) of the World”12 and Richard Pryor would use the same racial epithet in an album title three years later.13 Our attitudes towards cultural authenticity and appropriation have evolved since the early 1970s.

In 2020, a 1988 Golden Girls episode called “Mixed Feelings” was pulled from the streaming platform Hulu due to “a scene in which Betty White and Rue McClanahan are mistaken for wearing blackface.”14 In the episode, Dorothy’s (White) son introduces his fiancé, a much older Black woman. Blanche and Rose are mortified with embarrassment when they unexpectedly meet the couple wearing cosmetic mud masks.

Were Rose and Blanche revisiting a minstrel show to characterize Black Americans as lazy, hypersexual thieves, ala “Amos ‘n Andy,” as minstrel shows were in the past?15 Of course not. The joke lay in their mutual embarrassment of appearing as if they were in blackface.16 Each Golden Girls actress (Betty White, Bea Arthur, Rue McClanahan, and Estelle Getty) came of age decades before the women’s movement, but their show was considerably progressive for their time. In its seven-year run, The Golden Girls featured episodes centered on then-controversial topics of racism, sexual harassment, same-sex marriage, age discrimination, homelessness, the death of children, and addiction.17 Perhaps most significantly, a 1990 episode titled “72 Hours,” has Rose worried that she may have come in contact with HIV.18 It was only five years prior that President Reagan first addressed the AIDS crisis, by which time 42,600 people had died from the disease. By 1990, that number had spiked to 310,000, a third of which were deaths occurring that same year.19 When one considers the climate of the times, airing the episode was courageous.

The same year “Mixed Feelings” was removed from Hulu, an actor named François Clemmons published Officer Clemmons: A Memoir. Clemmons played “Officer Clemmons” on Mr. Roger’s Neighborhood in the late 1960s, the first African American actor to have a recurring role on a children’s television program.20 In Clemmon’s mostly heartwarming book, he relates an incident in which Fred Rogers called him into his office. His boss said to him, “Someone has informed us that you were seen at the local gay bar downtown. Now, I want you to know, Franc, that if you’re gay, it doesn’t matter to me at all. Whatever you say and do is fine with me, but if you’re going to be on the show as an important member of the Neighborhood, you can’t be out as gay.”

Was Mr. Rogers homophobic? When Rogers had the conversation with Clemmons, homosexuality was still listed as a disorder in the DSM. It wasn’t until 1974 that it was replaced with “sexual orientation disturbance.”21 In reality, Fred Rogers, a Presbyterian minister, was an LGBTQ ally. He’d intentionally hired gay men and women since the 1960s and rebuffed efforts from his viewers to renounce homosexuality.22

This article appeared in Skeptic magazine 29.2
Buy print edition
Buy digital edition
Subscribe to print edition
Subscribe to digital edition
Download our app

In John Hughes’ The Breakfast Club (1985)23 and Jeff Kanus’ Revenge of the Nerds (1984),24 there are scenes of sexual assault upon women played for laughs. Both Gene Siskel and Roger Ebert (renowned film critics) praised each film, neither noting their discomfort with the now-troubling scenes in either review.25, 26, 27 Why did they fail to do so? Were both Siskel and Ebert misogynists willing to overlook scenes of women being sexually assaulted? Of course not. The social mores in the early 1980s didn’t apply to those we share today. Are these scenes excusable? No, but both actresses (Molly Ringwald and Julie Montgomery) have publicly reckoned with the blatant sexism in their roles and neither has insisted the scenes be omitted.28, 29

In 2022, the UK’s Channel 5 aired the 1961 classic Breakfast at Tiffany’s, but bowdlerized scenes of Mickey Rooney as “Mr. Yunioshi,” an over-the-top yellow-face Asian caricature.30 Should Rooney’s role be excised? No. Just like the racist characters in Disney movies of the 1940s–1990s, and the sexual assaults depicted for laughs in 1980s raunchy comedies, the climate in 1961 was different.

Pop culture of the past is just that: of the past. Applying today’s standards to them is at best a fool’s errand and, at worst (as seen in the cases above) a slippery slope toward censorship. Entertainment from yesteryear should be taken in context while viewed in its entirety.

About the Author

John D. Van Dyke is an academic and science educator. His personal website is vandykerevue.org.

References
  1. https://bit.ly/3vjUhOj
  2. https://bit.ly/48YFeYe
  3. https://bit.ly/49UFKaT
  4. https://bit.ly/3TFD1w8
  5. https://bit.ly/3TpvgcA
  6. https://bit.ly/43p6fTb
  7. https://bit.ly/43ltjm0
  8. https://bit.ly/3TEanM6
  9. https://bit.ly/3IHU5vb
  10. https://bit.ly/3IJzVRu
  11. https://bit.ly/3IHU9uV
  12. Miles, B. & Badman, K. (2001). The Beatles Diary After the Break-Up: 1970–2001. Music Sales Group.
  13. https://bit.ly/3TgVYE6
  14. https://bit.ly/3VoMmKi
  15. https://bit.ly/43koCJd
  16. https://bit.ly/3IHHGYf
  17. https://bit.ly/43lj6G0
  18. https://bit.ly/43DFElP
  19. https://bit.ly/3v783Ut
  20. Clemmons, F. S. (2020). Officer Clemmons: A Memoir. Catapult.
  21. https://bit.ly/3vg6XWj
  22. https://bit.ly/49XehW4
  23. https://bit.ly/4ahrvN1
  24. https://bit.ly/3VmOGBu
  25. https://bit.ly/3ViAR72
  26. https://bit.ly/4cdaDJ4
  27. https://bit.ly/4cj1RcG
  28. https://bit.ly/3VmZOOP
  29. https://bit.ly/492E65L
  30. https://bit.ly/4chtAu9
Categories: Critical Thinking, Skeptic

An Article, A Podcast, and An Audiobook

Science blog of a physics theorist Feed - Fri, 09/20/2024 - 5:16am

Things have been extremely busy! I have

If any of these might interest you, here are the details!

Article on Science and Language in New Scientist

First, about the latest article I’ve written for New Scientist magazine. (My other New Scientist articles can be found at the bottom of this page.) This one is about the interplay between science and language. There are a lot of words in English that have been repurposed by physicists — force, mass, energy, field, etc. — whose meanings for physicists differ, to a greater or lesser extent, from their meanings in ordinary conversational settings.  This definitional mismatch creates all sorts of opportunities for misunderstandings.

I also dealt with this issue, to a certain extent, in my book. From my experience teaching, and also writing on this blog for many years, I have come to the conclusion that one can’t properly explain the most important results of modern physics without close attention to this linguistic challenge. 

Anyway, in this new article, the focus is mostly on three words crucial for modern physics: atom, force, and particle.  I examine how and why their meanings have shifted over time, and the legacies of these shifts for those trying to make sense of physicists’ verbal explanations of how the universe works.

This is my second article of the month; if you missed my article in Quanta Magazine about how the Higgs field truly gives mass to elementary particles, you can find it here.  My approach to this topic (also covered extensively in my book) avoids the false analogies of the Higgs field being like molasses, or soup, or anything else that violates the Principle of Relativity. It also draws attention to the connection of these ideas to those of resonance, which is fundamental to the physics of musical instruments.  

If you find these articles too brief or too oracular, the book can provide far more details without the use of math.  If you actually want some of the math (but not too much), you can find that here on this website, for example here and here. If that’s still not quite what you want, feel free to ask me for guidance, or explore this website further using the Search bar at the upper right of this page.

Know Time Podcast About the Topics of my Book

Shalaj Lawania, on his podcast Know Time, has a terrific series of interviews with a wide variety of interesting people, including but not limited to scientists.   I’m very pleased to be added to his impressive list. It’s a real shame that he has relatively few subscribers, given the high quality of what he is doing. I strongly encourage you to check out his channel.  You will not be disappointed.

As he always does, Lawania curated a well-structured interview. We methodically covered a wide range of topics from my book, as well as some more general issues about science and belief.  The full interview is two hours long!  But no worries if that’s way too much; you can listen to various self-contained excerpts that Lawania has separated out.

The AudioBook is Finally In Sight

Since many people find it convenient to listen to books rather than read their texts, it’s not surprising that I’ve often been asked about the audio version of my book, for which we’ve had to wait over six months. But the wait is over. I’m pleased to tell you that the audiobook will finally become available next Tuesday, September 24th.  (It can be pre-ordered now.) The company who recorded it wanted a professional reader with an in-house recording studio, so they did not offer me the option of reading it myself. But I am reasonably confident in the skills of the reader they selected.

I’m concerned, though, that the audiobook may be harder to follow than the written text. After all, the written text has many figures and a glossary, and it’s more amenable when one wants to review earlier material that appears again in a later section. To mitigate this, I have put the figures, the tables, the glossary, and the endnotes online on this webpage. That way, while you’re listening to the audiobook, you can have the images etc. open in your browser, so that you can access them easily when they are mentioned. 

And I do think you should expect to listen to certain sections of the book twice. The ideas of modern physics are very strange indeed. I’m sure that I myself, before I took physics classes, would have had trouble completely absorbing these concepts the first time through.

Let me know how the audiobook works for you! And if you think there’s anything I can do on this website to make the audiobook easier and more accessible, please let me know.

More to Come

More podcasts and articles are in the works. So is additional supporting material for the book. Stay tuned!

Categories: Science

A Simple Challenge For Drs. Vinay Prasad and Tracy Hoeg: Denounce Robert Kennedy Jr. For Promoting The Movie Vaxxed 3: Authorized to Kill

Science-based Medicine Feed - Fri, 09/20/2024 - 4:48am

If Drs. Vinay Prasad and Tracy Hoeg want to prove they actually care about routine vaccines, they can do what the should have done a long time ago and openly and unequivocally denounce Mr. Kennedy and his fire hose of anti-vaxx disinformation.

The post A Simple Challenge For Drs. Vinay Prasad and Tracy Hoeg: Denounce Robert Kennedy Jr. For Promoting The Movie Vaxxed 3: Authorized to Kill first appeared on Science-Based Medicine.
Categories: Science

Antarctica’s 'doomsday' glacier is heading for catastrophic collapse

New Scientist Feed - Fri, 09/20/2024 - 3:21am
As a six-year investigation into the Thwaites glacier in Antarctica wraps up, the scientists involved are pessimistic for the future of this glacier and the consequences for sea level rise
Categories: Science

Bacteria on the space station are evolving for life in space

New Scientist Feed - Thu, 09/19/2024 - 11:00pm
Genetic analysis shows that microbes growing inside the International Space Station have adaptations for radiation and low gravity, and may pose a threat to astronauts
Categories: Science

Slime Mold Can Teach Us About the Cosmic Web

Universe Today Feed - Thu, 09/19/2024 - 2:59pm

Computers truly are wonderful things and powerful but only if they are programmed by a skilful mind. Check this out… there is an algorithm that mimics the growth of slim mold but a team of researchers have adapted it to model the large scale structure of the Universe. Since the Big Bang, the universe has been expanding while gravity concentrates matter into galaxies and clusters of galaxies. Between them are vast swathes of empty space called voids. The structure, often referred to as the cosmic web.

The cosmic web is the largest scale structure of the universe and it’s made up of filaments of galaxies and dark matter that stretch across the gulf of space. The filaments connect galaxy clusters with immense voids in between. The web-like structure has formed as a result of the force of gravity pulling matter together since the beginning of time. Studying the cosmic web helps us to piece together the evolution of the universe, how matter is distributed and the relationship with dark matter. 

Image from NASA’s Hubble Space Telescope of a galaxy cluster that could contain dark matter (blue-shaded region). (Credit: NASA, ESA, M. J. Jee and H. Ford et al. (Johns Hopkins Univ.))

Since the early 80’s it’s been known that the nature of a galaxy and its environmental properties has an impact on how it grows and evolves. The exact nature and how this happens is still the cause of many debates. A team of researchers believe they may have demonstrated how galaxies evolve using a slime algorithm!

The team, led by Farhanul Hasan, Professor Joe Burchett and eight co-authors, published their findings ‘Filaments of the Slime Mold Cosmic Web and How they Affect Galaxy Evolution’ in August’s edition of the Astrophysical Journal.  In the paper they report how the mold algorithm has helped to unlock mysteries of the cosmos. 

Burchett recommended the slime mold algorithm could be used for an astrophysical application. Hasan worked with Burchett and altered the algorithm to help them visualise the cosmic web. The team worked with graphics rendering expert Oskar Elek to use the slime mold algorithm. The mold algorithm was designed to mimic slime mold that could find its own food by reforming itself into a structure much like the cosmic web. It took the team several years to complete their work. 

In shaping the Universe, gravity builds a vast cobweb-like structure of filaments tying galaxies and clusters of galaxies together along invisible bridges hundreds of millions of light-years long. A galaxy can move into and out of the densest parts of this web throughout its lifetime. Credit: Volker Springel (Max Planck Institute for Astrophysics) et al.

The result produced far more detailed discrete structures than the old method according to Hasan. He added ‘I didn’t know how well it was going to work or not work, but I had a hunch the slime mold method could tell us much more detailed information about how density is structured in the universe, so I decided to give it a try.’

Of the conclusion, Hasan and team found that the impact on galaxies seems to have taken the proverbial u-turn. In earlier epochs, the growth of a galaxy was stimulated by proximity to larger structures. In the near universe, and therefore in cosmologically recent times, we see that galaxy growth is limited by proximity to larger structures. This wasn’t possible without the modified slime mold algorithm. We can now map out the gas around the real universe using the algorithm across many different times to help understand how the web has changed and the universe evolved. 

Source : NMSU astronomy research uses slime mold to model galaxies

The post Slime Mold Can Teach Us About the Cosmic Web appeared first on Universe Today.

Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator