You are here

News Feeds

New material puts eco-friendly methanol conversion within reach

Matter and energy from Science Daily Feed - Mon, 06/17/2024 - 2:36pm
Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.
Categories: Science

Custom-made molecules designed to be invisible while absorbing near-infrared light

Matter and energy from Science Daily Feed - Mon, 06/17/2024 - 2:36pm
Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.
Categories: Science

Custom-made molecules designed to be invisible while absorbing near-infrared light

Computers and Math from Science Daily Feed - Mon, 06/17/2024 - 2:36pm
Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.
Categories: Science

MXenes for energy storage

Matter and energy from Science Daily Feed - Mon, 06/17/2024 - 2:36pm
A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.
Categories: Science

AI recognizes athletes' emotions

Computers and Math from Science Daily Feed - Mon, 06/17/2024 - 2:36pm
Using computer-assisted neural networks, researchers have been able to accurately identify affective states from the body language of tennis players during games. For the first time, they trained a model based on artificial intelligence (AI) with data from actual games. Their study demonstrates that AI can assess body language and emotions with accuracy similar to that of humans. However, it also points to ethical concerns.
Categories: Science

Novel method for measuring nano/microplastic concentrations in soil using spectroscopy

Matter and energy from Science Daily Feed - Mon, 06/17/2024 - 2:35pm
Current techniques for measuring nano/microplastic (N/MP) concentrations in soil require the soil organic matter content to be separated and have limited resolution for analyzing N/MPs sized <1 m. Therefore, researchers have developed a novel yet simple method to measure N/MP concentration in different soil types using spectroscopy at two wavelengths. This method does not require the soil to be separated in order to detect the N/MPs and can accurately quantify N/MPs regardless of their size.
Categories: Science

Satellites to monitor marine debris from space

Space and time from Science Daily Feed - Mon, 06/17/2024 - 2:35pm
Detecting marine debris from space is now a reality, according to a new study. Until now, the amount of litter -- mostly plastic -- on the sea surface was rarely high enough to generate a detectable signal from space. However, using supercomputers and advanced search algorithms, the research team has demonstrated that satellites are an effective tool for estimating the amount of litter in the sea.
Categories: Science

Modified gravity theory: A million light years and still going

Space and time from Science Daily Feed - Mon, 06/17/2024 - 2:35pm
In a breakthrough discovery that challenges the conventional understanding of cosmology, scientists have unearthed new evidence that could reshape our perception of the cosmos. New research shows that rotation curves of galaxies stay flat indefinitely far out, corroborating predictions of modified gravity theory as an alternative to dark matter.
Categories: Science

Scientists develop 3D printed vacuum system that aims to trap dark matter

Space and time from Science Daily Feed - Mon, 06/17/2024 - 2:35pm
Using a specially designed 3D printed vacuum system, scientists have developed a way to 'trap' dark matter with the aim of detecting domain walls, this will be a significant step forwards in unravelling some of the mysteries of the universe.
Categories: Science

Golden ball mills as green catalysts

Matter and energy from Science Daily Feed - Mon, 06/17/2024 - 2:35pm
A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.
Categories: Science

Molecular sponge for the electronics of the future

Matter and energy from Science Daily Feed - Mon, 06/17/2024 - 2:35pm
An international research team has succeeded in developing a new type of material in the rather young research field of covalent organic frameworks. The new two-dimensional polymer is characterized by the fact that its properties can be controlled in a targeted and reversible manner. This has brought the researchers a step closer to the goal of realizing switchable quantum states.
Categories: Science

Molecular sponge for the electronics of the future

Computers and Math from Science Daily Feed - Mon, 06/17/2024 - 2:35pm
An international research team has succeeded in developing a new type of material in the rather young research field of covalent organic frameworks. The new two-dimensional polymer is characterized by the fact that its properties can be controlled in a targeted and reversible manner. This has brought the researchers a step closer to the goal of realizing switchable quantum states.
Categories: Science

Study finds US does not have housing shortage, but shortage of affordable housing

Computers and Math from Science Daily Feed - Mon, 06/17/2024 - 2:34pm
A new study has found that the United States does not have a housing shortage, contrary to popular belief. An analysis of Census data shows the majority of the nation's metropolitan and micropolitan markets have enough housing units for the number of househoulds in the area. However, median incomes indicate many people cannot afford the housing available in the area, indicating policy needs to address income and housing prices instead of trying to build out of the problem, authors argue.
Categories: Science

Breakthrough approach enables bidirectional BCI functionality

Matter and energy from Science Daily Feed - Mon, 06/17/2024 - 2:34pm
Brain-computer interfaces or BCIs hold immense potential for individuals with a wide range of neurological conditions, but the road to implementation is long and nuanced for both the invasive and noninvasive versions of the technology. Scientists have now successfully integrated a novel focused ultrasound stimulation to realize bidirectional BCI that both encodes and decodes brain waves using machine learning in a study with 25 human subjects. This work opens up a new avenue to significantly enhance not only the signal quality, but also, overall nonivasive BCI performance by stimulating targeted neural circuits.
Categories: Science

AI shows how field crops develop

Computers and Math from Science Daily Feed - Mon, 06/17/2024 - 2:34pm
Researchers developed software that can simulate the growth of field crops. To do this, they fed thousands of photos from field experiments into a learning algorithm. This enabled the algorithm to learn how to visualize the future development of cultivated plants based on a single initial image. Using the images created during this process, parameters such as leaf area or yield can be estimated accurately.
Categories: Science

Pair of merging quasars at cosmic dawn

Space and time from Science Daily Feed - Mon, 06/17/2024 - 2:34pm
Astronomers have discovered a double-record-breaking pair of quasars. Not only are they the most distant pair of merging quasars ever found, but also the only pair confirmed in the bygone era of the Universe's earliest formation.
Categories: Science

Investigating the origins of the crab nebula

Space and time from Science Daily Feed - Mon, 06/17/2024 - 2:33pm
A team of scientists used NASA's James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus.
Categories: Science

A New Way to Prove if Primordial Black Holes Contribute to Dark Matter

Universe Today Feed - Mon, 06/17/2024 - 1:56pm

The early Universe was a strange place. Early in its history—in the first quintillionth of a second—the entire cosmos was nothing more than a stunningly hot plasma. And, according to researchers at the Massachusetts Institute of Technology (MIT), this soup of quarks and gluons was accompanied by the formation of weird little primordial black holes (PHBs). It’s entirely possible that these long-vanished PHBs could have been the root of dark matter.

MIT’s David Kaiser and graduate student Elba Alonso-Monsalve suggest that such early super-charged black holes were very likely a new state of matter that we don’t see in the modern cosmos. “Even though these short-lived, exotic creatures are not around today, they could have affected cosmic history in ways that could show up in subtle signals today,” Kaiser said. “Within the idea that all dark matter could be accounted for by black holes, this gives us new things to look for.” That means a new way to search for the origins of dark matter.

Dark matter is mysterious. No one has directly observed it yet. However, its influence on regular “baryonic” matter is detectable. Scientists have many suggestions for what dark matter could be, but until they can observe it, it’s tough to tell what the stuff is, exactly. Black holes could be likely candidates. But the mass of all the observable ones isn’t enough to account for the amount of dark matter in the cosmos. However, there may be a connection to black holes after all.

Black Holes Through Cosmic Time

Most of us are familiar with the idea of at least two types of black holes: stellar-mass and supermassive. There is also a population of intermediate-mass black holes, which are rare. The stellar-mass objects form when massive stars explode as supernovae and collapse to form black holes. These exist throughout many galaxies. The supermassive ones aggregate many millions of solar masses together. They form “hierarchically” from smaller ones and exist in the hearts of galaxies. The intermediate-mass ones probably form hierarchically as well and could be a hidden link between the other two types.

An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to create black holes. Credit: Aaron Smith/TACC/UT-Austin.

Black holes have formed throughout the history of the Universe. That’s why the idea of primordial black holes isn’t too much of a surprise, although they remain elusive. In their very primitive state, they’d be ultradense objects with the mass of an asteroid punched down into something the size of an atom. They probably didn’t last very long—maybe another quintillionth of a second. After formation, they either blinked out of existence or got scattered across the expanding Universe.

The Link Between Primordial Black Holes and Dark Matter

So, how could these weird PHBs affect the formation of dark matter if they winked in and out of existence so quickly? That’s where Kaiser and his student’s work come in. They suggest that as the first PHBs scattered, they somehow “tugged” on space-time and changed something that could explain dark matter. That same process could have produced even smaller black holes with a curious property called “color charge.” And, there’s a dark matter connection.

“Color charge” is a property of quarks and gluons, and it ends up gluing them together. Think of it as a “super-charge”. Kaiser and Alonso-Monsalve suggest that some of the very early PHBs had this “supercharge” in the same way as the quarks and gluons had it. If that’s true, then the earliest super-color-charged PHBs would have been an entirely new state of matter. We don’t see them around anymore because they likely evaporated a fraction of a second after they spawned. But, their existence was necessary, particularly to the formation of dark matter.

Even during their short life span, however, the earliest supercharged PHBs could have influenced a key cosmological transition: the time when the first atomic nuclei were forged. Those color-charged black holes could have affected the balance of fusing nuclei. And, they could have done it in a way that astronomers might someday detect with future measurements. Such an observation would point convincingly to primordial black holes as the root of all dark matter today.

What Were Those Early PHBs Made Of?

If those PHBs did exist, what were THEY made of? Unlike other black holes, there’s not much evidence for something like a star or another black hole that “birthed” these early ones. To figure that one out, Alonso-Monsalve and Kaiser did some exploration. They calculated the PHB formation “era” as happening just after the Big Bang. “Typical” microscopic black holes formed within this short “flash of time.” Those would have been as massive as an asteroid and as small as an atom. But, they also found that a tiny population of exponentially smaller black holes came into being. Those had the mass of a rhino and a size much smaller than a single proton.

This process probably started around one second after the Big Bang. That gave all these PBHs plenty of time to disrupt the equilibrium conditions that would have prevailed when the first nuclei began to form from the quark-gluon plasma. The super-charged black holes would have quickly evaporated. That probably happened about the time when the first atomic nuclei began to form. “These objects might have left some exciting observational imprints,” Alonso-Monsalve said. “They could have changed the balance of this versus that, and that’s the kind of thing that one can begin to wonder about.”

From Plasma to PHBs to Dark Matter

The backdrop for the formation of these short-lived black holes? The quark-gluon plasma. And, it should have a distribution of “color charge”. Kaiser and Alonso-Monsalve determined the size of an area in the plasma that could collapse to form a PBH. It turns out there wouldn’t have been much color charge in most typical black holes formed in the moment. That’s because they probably formed by absorbing a huge number of regions that had a mix of charges. Thus, they wouldn’t be “supercharged.”

But the smallest black holes would have been highly color-charged. They would have contained the maximum amount of any type of charge allowed for a black hole. And, by their formation, they could well have produced the tiniest bit of change that led to the formation of dark matter.

For More Information

Exotic Black holes Could be a Byproduct of Dark Matter
Preprint: Primordial Black Holes with QCD Color Charge

The post A New Way to Prove if Primordial Black Holes Contribute to Dark Matter appeared first on Universe Today.

Categories: Science

Baby Stars are Swarming Around the Galactic Center

Universe Today Feed - Mon, 06/17/2024 - 1:53pm

The vicinity of Sagittarius A* (Sgr A*), the supermassive black hole at the Milky Way’s center, is hyperactive. Stars, gas, and dust zip around the black hole’s gravitational well at thousands of kilometers per hour. Previously, astronomers thought that only mature stars had been pulled into such rapid orbits. However, a new paper from the University of Cologne and elsewhere in Europe found that some relatively young stars are making the rounds rather than older ones, which raises some questions about the models predicting how stars form in these hyperactive regions.

Astronomers have known about the highly mobile stars surrounding Sgr A* for over thirty years now. They even have their own categorization, known as S stars. However, researchers lacked the equipment to analyze the age of some of these stars, and theories pointed to older, dimmer stars being the most likely to survive near a black hole.

But then, as it does so often with science, evidence that challenged the old and dim star theory began to pile up. Twelve years ago, researchers found an object they believed was a cloud of gas that was in the process of being eaten by Sgr A*. More recently, evidence has begun to hint that that gas cloud might surround a newly born star, known as a “Young Stellar Object” (YSO) in astronomy jargon.

Video showing the motion of stars around Sgr A*, from the corresponding author of the new paper.
Credit – Florian Peißker YouTube Channel

As Sgr A* started to receive more observational time with more powerful telescopes over the years, researchers were able to focus in on other interesting objects, the paper describes dozens of potential YSOs in the vicinity of the previously known S stars. Interestingly, they also seem to follow similar orbits.

Those orbits have the new YSOs zipping in front of the black hole at thousands of kilometers per hour, much faster than typical star formation theories allow. Maybe some intricacy of the black hole’s gravitational field is causing this dramatic motion, or maybe there is some other unknown aspect of stellar formation that can account for these fast-moving young stars, but for now, how they are formed remains a mystery.

However, the researchers made another interesting discovery as part of their work. They found that these YSOs, along with their S star counterparts, orbit in very well-defined formations. In a press release from the University of Cologne, they compare this to how bees from the same hive fly in formation when together. In this case, the black hole appears to be forcing them into this common formation, though other explanations could also account for it, and that analysis wasn’t part of the current research.

Fraser digs into the long term future of our supermassive black hole.

The pattern they formed was three-dimensional, so it wasn’t as simple as one stellar object following the orbital path of another around the black hole. However, the complexity still needs to be studied in detail, and theories that would account for this new information about orbital patterns are hard to come by.

As more telescope time on increasingly powerful systems is devoted to watching one of the most intriguing parts of our galaxy, there will be plenty of data for future astronomers to puzzle over. But for now, this is a step toward understanding the hyperactive world around Sgr A* and the world of stellar birth more generally and how extreme forces play a role in both.

Learn More:
University of Cologne – High-speed baby stars circle the supermassive black hole Sgr A* like a swarm of bees
Peißker et al. – Candidate young stellar objects in the S-cluster: Kinematic analysis of a subpopulation of the low-mass G objects close to Sgr A*
UT – Three Baby Stars Found at the Heart of the Milky Way
UT – Baby Stars Discharge “Sneezes” of Gas and Dust

Lead Image:
Image of the galactic center, including Sgr A*
Credit – NASA/JPL-Caltech/ESA/CXC/STSci

The post Baby Stars are Swarming Around the Galactic Center appeared first on Universe Today.

Categories: Science

Shipping companies are testing biofuel made from cashew nut shells

New Scientist Feed - Mon, 06/17/2024 - 1:31pm
Cashew nut shells are a source of low-emissions biofuel, which is being tested in several ships, but it is unlikely there will be enough to make much of a dent in the industry’s emissions
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator