You are here

News Feeds

Racehorse success may depend on their gut microbiome in early life

New Scientist Feed - Wed, 08/07/2024 - 3:00am
Horses that are bred to race seem to perform better on the course if they had a diverse gut microbiome as foals
Categories: Science

Wednesday: Hili dialogue

Why Evolution is True Feed - Wed, 08/07/2024 - 1:29am

Meanwhile, in Dobrzyn, Hili plays the peacemaker:

Hili: Let’s not quarrel. A: But we do not quarrel. Hili: I know, but calls for unity are in fashion again

 

Hili: Nie kłóćmy się.
Ja: Przecież się nie kłócimy.
Hili: Wiem, ale wezwania do jedności znowu są modne.

 

Categories: Science

Modern fuel-efficient jets can cause more warming than older planes

New Scientist Feed - Tue, 08/06/2024 - 11:00pm
Passenger planes and private jets that fly higher can create longer-lasting contrails, meaning their contribution to global warming has been underestimated
Categories: Science

Sea lion cameras record amazing predator's view of the ocean

New Scientist Feed - Tue, 08/06/2024 - 10:00pm
Eight Australian sea lions were fitted with cameras and trackers to capture unprecedented insights into their behaviour and the marine habitats where they hunt
Categories: Science

Dozing at the wheel? Not with these fatigue-detecting earbuds

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 5:57pm
To help protect drivers and machine operators from the dangers of drifting off, engineers have created prototype earbuds that can detect the signs of drowsiness in the brain. In a new study, the researchers show that their Ear EEG platform is sensitive enough to detect alpha waves, a pattern of brain activity that increases when you close your eyes or start to fall asleep.
Categories: Science

If Advanced Civilizations Using Quantum Communications, Is That Why We’ve Never Seen Them?

Universe Today Feed - Tue, 08/06/2024 - 5:49pm

Establishing communication with an alien intelligence is one of the news items I, and I’m sure many others, long to see. Since we have started the search for advanced civilisations we have tried numerous ways to detect their transmissions but to date, unsuccessfully. A new paper suggests quantum communication may be the ideal method for interstellar communication. It has many benefits but the challenge is that it would require a receiver over 100km across to pick up a signal. Alas they know we don’t have that tech yet!

The search for alien signals has been undertaken under the banner of the search for extraterrestrial intelligence or SETI for short. It began in 1960 when Frank Drake commenced the first search. It was of course not fruitful but since then, large radio telescopes have been used to undertake searches. There have been many projects but of particular interest has been Project Breakthrough. It has used advanced technology and international collaborations but still there has been no success. 

Frank Drake writing his famous equation on a white board. Credit: SETI.org

To be able to effectively search for alien signals its imperative to fully understand the nature of communication. A quest that started back in 1948 with the development of the modern theory of classical communication. In 1959 it was proposed that human technology was available to send or receive interstellar classical communication which simply requires a message, someone to send it and someone to receive it. 

Over the years that followed communication theories developed and quantum information theory emerged. It explores how quantum mechanics has an affect on the storage of and transmission of information. At the centre of the theory is the quantum bit or qubit which can exist in a number of states all at once due to the phenomenon of superposition. In classical information theory, bits of information are either 0 or 1 but in quantum theory they can be any infinite number of combinations with certain probabilities until measured. At that point, the wave function collapses to one of the definite states.

Another key element of quantum theory is entanglement where two or more particles are interconnected so that the state of one is related to the state of the other no matter how far apart they are. With qubits linked in this way data processing can be far faster than in classical model and more secure too. The paper authored by Latham Boyle from the University of Edinburgh suggests that it may be possible to send or receive information between the stars using quantum communications. A previous study by Arjun Berera proposed photon qubits could be used to transmit information over interstellar and even possibly intergalactic distances without loss of coherence. 

The concept of quantum coherence describes the ability to maintain the specific quantum state but this alone is not enough for communication. The communication channel must also have sufficient capacity. In addition, specific wavelengths must be used (or avoided for example wavelengths less than 26.5 cm to avoid issues with the cosmic microwave background.) To facilitate this, radio telescopes with a diameter of 100 km must be used. Currently we don’t have the capability to build such instruments and this may explain why, in such a large and old universe, we still haven’t detected any aliens yet! We may simply have to wait until we can build such instruments before aliens can communicate with us.

Source : On Interstellar Quantum Communication and the Fermi Paradox

The post If Advanced Civilizations Using Quantum Communications, Is That Why We’ve Never Seen Them? appeared first on Universe Today.

Categories: Science

Can AI chatbots be reined in by a legal duty to tell the truth?

New Scientist Feed - Tue, 08/06/2024 - 5:01pm
To address the problem of AIs generating inaccurate information, a team of ethicists says there should be legal obligations for companies to reduce the risk of errors, but there are doubts about whether it would work
Categories: Science

Elliptical Orbits Could be Essential to the Habitability of Rocky Planets

Universe Today Feed - Tue, 08/06/2024 - 4:40pm

A seismic shift occurred in astronomy during the Scientific Revolution, beginning with 16th-century polymath Copernicus and his proposal that the Earth revolved around the Sun. By the 17th century, famed engineer and astronomer Galileo Galilei refined Copernicus’ heliocentric model using observations made with telescopes he built himself. However, it was not until Kepler’s observations that the planets followed elliptical orbits around the Sun (rather than circular orbits) that astronomical models matched observations of the heavens completely.

As it turns out, this very quirk of orbital mechanics may be essential to the emergence of life on planets like Earth. That was the hypothesis put forth in a recent study by a team of astronomers led by the University of Leeds. According to their work, orbital eccentricity (how much a planet’s orbit deviates from a circle) can influence a planet’s climate response, which could have a profound effect on its potential habitability. These findings could be significant for exoplanet researchers as they continue to search for Earth-like planets that could support life.

The team was led by Binghan Liu, a PhD Student in the School of Physics and Astronomy at the University of Leeds, who conducted the research as part of his thesis. He was joined by Daniel R. Marsh, the Priestley Chair in Comparative Planetary Atmospheres (and Liu’s thesis advisor), and other colleagues from Leeds and the Institute of Astronomy at the University of Cambridge. Their paper, “Eccentric orbits may enhance the habitability of Earth-like exoplanets,” was recently published in the Monthly Notices of the Royal Astronomical Society.

The idea of circular orbits has deep roots in Western astronomy, going all the way back to Classical Antiquity. Some examples include Plato and Aristotle, who argued that the then-known celestial bodies (the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn) were perfect spheres that orbited Earth in concentric circles. This belief endured well into the Scientific Revolution, with both Copernicus and Galileo arguing that the then-known planets (Mercury, Venus, the Earth and the Moon, Mars, Jupiter, and Saturn) orbited the Sun in concentric circles.

It was not until Johannes Kepler introduced the concept of elliptical orbits that scientists could match their astronomical models to the observed motions of the planets. Since then, scientists have learned a great deal about orbital parameters – such as semi-major axis (a), eccentricity (e), axial tilt (?), inclination (i), and periapsis – and how they can influence a planet’s climate over time. These parameters have also become very important for exoplanet studies, as they are vital to determining if a planet could be “potentially habitable.”

For their study, Liu and his colleagues used the Whole Atmosphere Community Climate Model (WACCM6), a high-top interactive Earth-system model capable of simulating conditions on Earth (from the oceans to the upper atmosphere) to simulate Earth-like exoplanets with two different orbital parameters. For one set, they assigned circular orbits (e = 0), while the others were assigned highly eccentric orbits (e = 0.4) – far greater than Earth’s eccentricity (0.016). They were also assigned zero obliquity (? = 0) and a fixed level of annual solar irradiance (aka. annual mean insolation).

After running 30 simulation years for each case, they examined how both groups of exoplanets behaved regarding their climate response. This included latitudinal and seasonal variations in their hydrological cycle (sea ice, land snow, and clouds) and land habitability metrics like surface temperature and precipitation. As they indicated in their paper, exoplanets within the highly eccentric orbit group had 25% more habitable land area for more than 80% of their orbit, with an average increase of 7% for their entire orbital cycle.

Artist’s illustration of Proxima Centauri b. ESO/M. Kornmesser

Naturally, there were some caveats and addendums that they were sure to include:

“It is important to note that the habitability of land depends on the chosen metric and the duration of time during which the conditions are met for a specific metric. We conclude that, under the same annual mean stellar flux, an Earth-analogue planet with zero-obliquity in a highly eccentric orbit around a Sun-like star may have enhanced land habitability compared to its circular counterpart.”

In other words, the simulations are based on planets with far more eccentric orbits than Earth and are not subject to the same changes in obliquity, which also profoundly impact Earth’s climate (i.e., glacial and inter-glacial periods). Nevertheless, their study demonstrates that planets with eccentric orbits are more likely to be habitable than those with circular orbits that experience little in the way of seasonal variations throughout the year. These results could have significant implications for exoplanet studies and the search for habitable worlds beyond the Solar System.

In addition, they note how astronomers will benefit from next-generation observatories that will be capable of spotting Earth-like exoplanets with eccentric orbits in the near future:

“The detection of highly eccentric terrestrial exoplanets is low due to the limitation of the current observation techniques, which are biased towards close-in and thus, tidally locked exoplanets in circular orbits. However, with the upcoming ground and space telescope missions such as PLATO, ELT, and HWO, more highly eccentric Earth-like rocky exoplanets may be revealed and characterized. Understanding the potential climate outcomes and habitability of highly eccentric rocky exoplanets remains a challenging task.”

Further Reading: MNRAS

The post Elliptical Orbits Could be Essential to the Habitability of Rocky Planets appeared first on Universe Today.

Categories: Science

Amazon soil may store billions more tonnes of carbon than once thought

New Scientist Feed - Tue, 08/06/2024 - 2:04pm
Nutrient-rich "dark earth" soil may store an amount of carbon nearly equivalent to annual CO2 emissions in the US, a finding that suggests the Amazon sequesters far more carbon than previously known
Categories: Science

Strange planets could be forming inside dying stars

New Scientist Feed - Tue, 08/06/2024 - 12:58pm
A planet orbiting extremely close to a white dwarf may have formed inside its star – this could be the origin of some of the most promising worlds beyond our solar system to search for life
Categories: Science

Researchers dig deeper into stability challenges of nuclear fusion -- with mayonnaise

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:13am
Researchers are using mayonnaise to study and address the stability challenges of nuclear fusion by examining the phases of Rayleigh-Taylor instability. Their innovative approach aims to inform the design of more stable fusion capsules, contributing to the global effort to harness clean fusion energy. Their most recent paper explores the critical transitions between elastic and plastic phases in these conditions.
Categories: Science

Advanced chelators offer efficient and eco-friendly rare earth element recovery

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:13am
The world is going to need a lot of weird metals in the coming years, according to chemistry professor. But he isn't talking about lithium, cobalt or even beryllium. He's interested in dysprosium, which is so hidden in the periodic table that you'd be forgiven for thinking he made it up.
Categories: Science

Stacking molecules like plates improves organic solar device performance

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:13am
Researchers found that how well light-converting molecules stack together in a solid is important for how well they convert light into electric current. A rigid molecule that stacked well showed excellent electricity generation in an organic solar cell and photocatalyst, easily outperforming a similar flexible molecule that did not stack well. This new way of improving the design of molecules could be used to pioneer the next generation of light-converting devices.
Categories: Science

Soft gold enables connections between nerves and electronics

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:13am
Gold does not readily lend itself to being turned into long, thin threads. But researchers have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.
Categories: Science

Concept for efficiency-enhanced noble-metal catalysts

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:13am
The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.
Categories: Science

A new way of thinking about the economy could help protect the Amazon, and help its people thrive

Computers and Math from Science Daily Feed - Tue, 08/06/2024 - 10:13am
To protect the Amazon and support the wellbeing of its people, its economy needs to shift from environmentally harmful production to a model built around the diversity of indigenous and rural communities, and standing forests.
Categories: Science

Researchers solve long-standing challenge for piezoelectric materials

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:12am
Heat and pressure can deteriorate the properties of piezoelectric materials that make state-of-the-art ultrasound and sonar technologies possible -- and fixing that damage has historically required disassembling devices and exposing the materials to even higher temperatures. Now researchers have developed a technique to restore those properties at room temperature, making it easier to repair these devices -- and paving the way for new ultrasound technologies.
Categories: Science

Heating for fusion: Why toast plasma when you can microwave it!

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:12am
Can plasma be sufficiently heated inside a tokamak using only microwaves? New research suggests it can! Eliminating the central ohmic heating coil normally used in tokamaks will free up much-needed space for a more compact, efficient spherical tokamak.
Categories: Science

Novel machine learning-based cluster analysis method that leverages target material property

Computers and Math from Science Daily Feed - Tue, 08/06/2024 - 10:12am
Conventional clustering techniques often focus on basic features like crystal structure and elemental composition, neglecting target properties such as band gaps and dielectric constants. A new study introduced a machine learning-powered clustering model that incorporates both basic features and target properties, successfully grouping over 1,000 inorganic materials. This model provides insights into material relationships, potential applications, and identifies key factors to balance band gaps and dielectric constants, addressing their trade-off relationship.
Categories: Science

Novel machine learning-based cluster analysis method that leverages target material property

Matter and energy from Science Daily Feed - Tue, 08/06/2024 - 10:12am
Conventional clustering techniques often focus on basic features like crystal structure and elemental composition, neglecting target properties such as band gaps and dielectric constants. A new study introduced a machine learning-powered clustering model that incorporates both basic features and target properties, successfully grouping over 1,000 inorganic materials. This model provides insights into material relationships, potential applications, and identifies key factors to balance band gaps and dielectric constants, addressing their trade-off relationship.
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator