You are here

Universe Today Feed

Subscribe to Universe Today Feed feed Universe Today Feed
Space and astronomy news
Updated: 17 hours 34 min ago

The Maximum Mass of a Neutron Star is 2.25 Solar Masses

Fri, 03/15/2024 - 7:24pm

When stars grow old and die, their mass determines their ultimate fate. Many supermassive stars have futures as neutron stars. But, the question is, how massive can their neutron stars get? That’s one that Professor Fan Yizhong and his team at Purple Mountain Observatory in China set out to answer.

It turns out that a non-rotating neutron star can’t be much more than 2.25 solar masses. If it was more massive, it would face a much more dire fate: to become a black hole. To figure this out, the team at Purple Mountain looked into what’s called the Oppenheimer limit. That’s the critical gravitational mass (abbreviated MTOV) of a massive object. If a neutron star stays below that Oppenheimer limit, it will remain in that state. If it grows more massive, then it collapses into a black hole.

A composite image of the Crab Nebula features X-rays from Chandra (blue and white), optical data from Hubble (purple), and infrared data from Spitzer (pink). The Crab Nebula is powered by a quickly spinning, highly magnetized neutron star called a pulsar, which was formed when a massive star ran out of its nuclear fuel and collapsed. Scientists now want to know how much mass characterizes a neutron star as opposed to a black hole. Understanding the Physics of a Neutron Star

So, why determine the upper mass of a neutron star? The Oppenheimer limit for these objects has some implications for both astrophysics and nuclear physics. Essentially, it indicates that compact objects with masses greater than 2.25 solar masses are probably what scientists term the “lightest” black holes. Those objects would likely exist in a range of 2.5 to 3 solar masses.

The whole thing is rooted in the way that stars age. Everything depends on their starting mass. So, for example, our Sun is a lower-mass yellow dwarf and it will take more than 10 billion years to go through its whole life cycle. It’s about 4.5 billion years old now. As it ages, it will consume heavier elements in its core, which will heat it up. That drives expansion, which means the Sun will become a red giant and cast off its outer layers beginning in about five billion years. Eventually, it will shrink to become a white dwarf. That tiny object will contain less than the mass of the Sun, although some white dwarfs can be slightly more massive.

How a Neutron Star Forms

Stars much more massive than the Sun go through the same cycle, but they end their lives in supernova explosions. What’s left becomes a black hole. Or, if there’s not quite enough mass left after the explosion, the remnant becomes a neutron star. So, that means there’s a delicate line between it and a black hole. That line is the Oppenheimer limit.

X-ray image of the Tycho supernova, also known as SN 1572, located between 8,000 and 9,800 light-years from Earth. Its core collapse could result in a neutron star or a black hole, depending on final mass. (Credit: X-ray: NASA/CXC/RIKEN & GSFC/T. Sato et al; Optical: DSS)

Stars between 8 and 25 solar masses produce neutron stars. Something called “neutron degeneracy pressure” holds those odd remnants together. The leftover core of the star compresses after the supernova explosion. But, neutrons and protons in atomic nuclei in the core get pushed tightly together and they can’t be compressed any more. So, the system goes into a weird equilibrium. At that point, the resulting neutron star is approaching the Oppenheimer limit. If the object gains (or has) any more mass, that puts it over the limit. The result is a black hole.

Refining the Oppenheimer Limit for Neutron Stars

Professor Fan’s team worked to find a more precise value for the Oppenheimer Limit. To do this, they gathered data from such observations as those made by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the VIRGO gravitational wave detector, as well as an instrument aboard the International Space Station called The Neutron Star Interior Composition Explorer Mission (NICER). These and other missions detect the effects of neutron star collisions and neutron star-black hole encounters. NICER, in particular, studies the timing of x-ray emissions at neutron stars and works to answer the question: How big is a neutron star? By knowing the size and mass of neutron stars, astronomers can gain a further understanding of their formation and the exotic matter they contain.

The team incorporated information about the maximum mass cutoff (i.e. what’s the highest level of mass a neutron star can have) inferred from the distribution of these objects. They used models of the equation of state in their work. The equation of state basically looks at the state of matter in the neutron star (and black hole) and the models describe the parameters under which it exists (including pressure, volume, and temperature). The result of their work gives not only an upper bound to the mass of the neutron star (~2.5 solar masses) but also reveals that such a neutron star would have a radius of around 11.9 kilometers.

It’s interesting to see the precision in these measurements and models, based on actual data from multi-messenger observations of gravitational waves and soft X-ray emissions. Fan and the team suggest in the paper they published about their work that the objects with masses between 2.5 and 3 solar masses (detected by second-generation gravitational wave detectors) are most likely the lightest black holes.

Further Implications

The work also has some pretty interesting implications for cosmology, in particular the Hubble Constant. That’s the value assigned to the rate at which the Universe is expanding. It lies somewhere around 70 kilometers per second per megaparsec (plus or minus 2.2 km/sec/Mpc). The numbers depend on which methods astronomers use to calculate them.

The Fan team’s work suggests that the mass cutoff for neutron stars detected by gravitational waves should align with MTOV. That does not change with redshift. The Oppenheimer Limit mass cutoff is associated with both the redshifted mass of the object and its redshift. That’s predicted by the cosmological model and luminosity distance. This provides a new method to test the underlying cosmological model of the Universe. The current model begins with the Big Bang, inflation, and expansion. It also includes the distribution of all the matter (including dark and baryonic matter), and in corporates the contribution of dark energy.

For More Information

Maximum mass of non-rotating neutron star precisely inferred to be 2.25 solar masses
Maximum gravitational mass MTOV = 2.25 +0.08/-0.07 Ms inferred at about 3% precision with multimessenger data of neutron stars
ArXiv Preprint

The post The Maximum Mass of a Neutron Star is 2.25 Solar Masses appeared first on Universe Today.

Categories: Science

Could Earth Life Survive on a Red Dwarf Planet?

Fri, 03/15/2024 - 3:39pm

Even though exoplanet science has advanced significantly in the last decade or two, we’re still in an unfortunate situation. Scientists can only make educated guesses about which exoplanets may be habitable. Even the closest exoplanet is four light-years away, and though four is a small integer, the distance is enormous.

That doesn’t stop scientists from trying to piece things together, though.

One of the most consequential questions in exoplanet science and habitability concerns red dwarfs. Red dwarfs are plentiful, and research shows that they host multitudes of planets. While gas giants like Jupiter are comparatively rare around red dwarfs, other planets are not. Observational data shows that about 40% of red dwarfs host super-Earth planets in their habitable zones.

Red dwarfs have a few things going for them when it comes to exoplanet habitability. These low-mass stars have extremely long lifespans, meaning the energy output is stable for long periods of time. As far as we can tell, that’s a benefit for potential habitability and the evolution of complex life. Stability gives life a chance to respond to changes and persist in their niches.

But red dwarfs have a dark side, too: flaring. All stars flare to some degree, even our Sun. But the Sun’s flaring is not even in the same league as red dwarf flaring. Red dwarfs can flare so powerfully that they can double their brightness in a very short period of time. Is there any way life could survive on red dwarf planets?

This is an artist’s concept of a red dwarf star undergoing a powerful eruption called a stellar flare. A hypothetical planet is in the foreground. Credit: NASA/ESA/G. Bacon (STScI)

New research from scientists in Portugal and Germany examines that question. To test the idea of red dwarf exoplanet habitability, the researchers used a common type of mould and subjected it to simulated red dwarf radiation, protected only by a simulated Martian atmosphere.

The research is “How habitable are M-dwarf Exoplanets? Modelling surface conditions and exploring the role of melanins in the survival of Aspergillus niger spores under exoplanet-like radiation.” The lead author is Afonso Mota, an astrobiologist at the Aerospace Microbiology Research Group in the Institute of Aerospace Medicine at the German Aerospace Center (DLR.) The paper has been submitted to the journal Astrobiology and is currently in pre-print.

Aspergillus niger is ubiquitous in soil and is commonly known for the black mould it can cause on some fruits and vegetables. It’s also a prolific producer of melanin. Melanin absorbs light very efficiently, and in humans, melanin is produced by exposure to UV radiation and darkens the skin. Melanins are widespread in nature, and extremophiles use them to protect themselves. Melanin can dissipate up to 99.9% of absorbed UV. Scientists think that the appearance of melanins may have played a critical role in the development of life on Earth by protecting organisms from the Sun’s harmful radiation.

A scanning electron microscope of freeze-dried Aspergillus niger. Image Credit: By Mogana Das Murtey and Patchamuthu Ramasamy – [1], CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=52254793

In essence, this research asks a pretty simple question. Can Aspergillus niger’s melanin help it survive red dwarf flaring when protected by a thin atmosphere like Mars’?

Proxima Centauri and TRAPPIST-1 are both well-known red dwarfs in exoplanet science because they host rocky exoplanets in their habitable zones. This study zeroes in on Proxima Centauri b (PCb hereafter) and TRAPPIST-1 e (T1e hereafter.) They’re both likely to have temperatures that allow liquid water to exist on their surfaces, given the right atmospheric properties. Both PCb and T1e likely have tolerable radiation environments, as well.

This figure from the research shows the Top of Atmosphere UV and X-ray radiation on Proxima Centauri and TRAPPIST-1 exoplanets. Image Credit: Mota et al. 2024.

It’s impossible to model the surface conditions of these planets perfectly, but researchers can get close by using what’s called the equilibrium temperature. Measuring stellar flaring is easier because it can be observed accurately from great distances. Melanin production in A. niger is likewise well understood. By working with all three factors, the researchers were able to model how the mould would fare on the surface of a habitable zone planet around a red dwarf.

“In the context of astrobiology, and particularly astromycology, the study of extremotolerant fungi has proven critical to better understanding the limits of life and habitability,” the authors write. “Aspergillus niger, an extremotolerant filamentous fungus, has been frequently used as a model organism for studying fungal survival in extreme environments, growing in a wide range of conditions.”

A. niger’s spores have a complex and dense coating of melanin that protects them from UV and X-ray radiation. They’ve been found in the International Space Station, a testament to their ability to withstand some of the hazards in space. Though they’re terrestrial, scientists can use them to study the potential habitability of exoplanets.

In this work, the researchers tested the survivability of A. niger spores in simulated surface conditions of PCb and T1c, where the red dwarf stars bathe the planetary surfaces in powerful UV and X-ray radiation.

The researchers tested different types of A. niger spores in different solutions. One was a wild strain, one was a mutant strain modified to produce and excrete pyomelanin, one of the melanins of particular interest to scientists, and the third was a melanin-deficient strain. The spores were suspended in either saline solutions, melanin-rich solutions, or a control solution for a period of time while being exposed to different amounts of both X-ray and UV radiation.

After exposure, the three types of A. niger spores were tested for their survivability and viability.

The results show that A. niger would be able to survive the intense radiation environments that can sterilize the surfaces of red dwarf exoplanets. Not if directly exposed, but if under only a few millimetres of soil or water. “If unattenuated, X-rays from flares would most likely sterilize the surface of all studied exoplanets. However, microorganisms suited to survive under the surface would be unaffected by most exogenous radiation sources under a few millimetres of soil or water,” the researchers explain.

This figure from the research shows the estimated subsurface X-ray absorbed dose throughout a thin layer of soil (orange) or water (blue). Water has a lower capacity for attenuating these high-energy photons, so a thicker water layer is needed to reduce the same dose compared to soil. The three dashed lines represent the LD90 (Lethal dose for 90% of a population) values for E. coli, A. niger, and D. radiodurans. E. coli is a common bacterium, and D. radiodurans is a radiation-resistant extremophile. Image Credit: Mota et al. 2024.

What the study comes down to is melanin. The more melanin there is, the higher the survival rate for A. niger.

“The experiments performed in this study corroborate the multifunctional purpose of melanin since A. niger MA93.1 spores germinated faster and more efficiently in a melanin-rich extract when compared to the two control solutions,” the authors write. A. niger MA93.1 is the mutant strain modified to produce and excrete melanin.

These figures from the research show the protective power of melanin when A. niger is exposed to UV-C radiation (left) and X-ray radiation (right.) A. niger in melanin solution showed better outgrowth after radiation exposure than either the saline solution or the control solution. The solid lines represent non-irradiated A. niger, and the dashed lines represented non-irradiated A. niger control samples. Image Credit: Mota et al. 2024.

For the exoplanets T1e and PCb, the research is promising for those of us hoping for habitability on other planets. When it comes to UV-C radiation, a significant fraction of spores from samples containing melanin could survive the superflares striking PCb and T1e, even with very little atmospheric shielding. Exposure to X-rays was similar.

While we all like to imagine complex life elsewhere in the Universe, we’re more likely to stumble on worlds nothing like Earth. If we find life, it’ll probably be simple organisms that are finding a way to survive in what we would consider marginal or extreme environments. Since red dwarfs are so common, that’s likely where we’ll find this life.

This study bolsters that idea.

“Furthermore,” the authors write in their conclusion, “results from this work showed how A. niger, like other extremotolerant and extremophilic organisms, would be able to survive harsh radiation conditions on the surface of some M-dwarf exoplanets.”

The melanin plays a critical role in their potential survival, the authors conclude. “Additionally, melanin-rich solutions were shown to be highly beneficial to the survival and germination of A. niger spores, particularly when treated with high doses of UV and X-ray radiation.”

There’s an ongoing scientific discussion around red dwarf exoplanet habitability, with flaring playing a prominent role. But this research shows maybe it’s too soon to write red dwarfs off while also shedding light on how life on Earth may have got going.

“These results offer an insight into how lifeforms may endure harmful events and conditions prevalent on exoplanets and how melanin may have had a role in the origin and evolution of life on Earth and perhaps on other worlds.”

The post Could Earth Life Survive on a Red Dwarf Planet? appeared first on Universe Today.

Categories: Science

Webb Continues to Confirm That Universe is Behaving Strangely

Fri, 03/15/2024 - 1:32pm

Over a century ago, astronomers Edwin Hubble and Georges Lemaitre independently discovered that the Universe was expanding. Since then, scientists have attempted to measure the rate of expansion (known as the Hubble-Lemaitre Constant) to determine the origin, age, and ultimate fate of the Universe. This has proved very daunting, as ground-based telescopes yielded huge uncertainties, leading to age estimates of anywhere between 10 and 20 billion years! This disparity between these measurements, produced by different techniques, gave rise to what is known as the Hubble Tension.

It was hoped that the aptly named Hubble Space Telescope (launched in 1990) would resolve this tension by providing the deepest views of the Universe to date. After 34 years of continuous service, Hubble has managed to shrink the level of uncertainty but not eliminate it. This led some in the scientific community to suggest (as an Occam’s Razor solution) that Hubble‘s measurements were incorrect. But according to the latest data from the James Webb Space Telescope (JWST), Hubble’s successor, it appears that the venerable space telescope’s measurements were right all along.

The research was conducted by the Supernova H0 for the Equation of State of Dark Energy (SH0ES) project, an international effort to eliminate uncertainties in the Hubble-Lemaitre Constant. The team is led by Dr. Adam Guy Riess and consists of astrophysics from the Space Telescope Science Institute (STScI), John Hopkin’s University (JHU), the NSF National Optical-Infrared Astronomy Research Laboratory (NOIRLab), Duke University, the École Polytechnique Fédérale de Lausanne (EPFL), and Raytheon Technologies. Their findings were published in the February 6th, 2024, issue of The Astrophysical Journal Letters.

The Hubble Tension arises from the fact that different distance measurements (aka. the “Cosmic Distance Ladder“) result in different values. For the calibration of short distances or the first “rung” on the ladder, astronomers rely on parallax measurements of nearby stars. For the next “rung,” they rely on Cepheid variables and Type Ia supernovae to measure the distances to objects tens of millions of light-years away. Distance measurements for these stars by Hubble yielded a value of 252,000 km/h per megaparsec (Mpc).

The final rung consists of using redshift measurements of the Cosmic Microwave Background (CMB) to calibrate distances of billions of light-years. The mapping of this background by the ESA’s Planck satellite yielded an estimate of about 244,000 km/h per Mpc (or about 269 km/s per light year). The simplest explanation for the discrepancy was that Hubble‘s measurements were inaccurate, perhaps because of uncertainties in the Cosmic Distance Ladder. Since it was launched in December 2021, the JWST has made its own measurements of Cepheid variables with its advanced infrared optics.

This has allowed astronomers to cross-check the optical-light measurements made by Hubble. This includes Riess, the Bloomberg Distinguished and Thomas J. Barber Professor of Physics and Astronomy at John Hopkins University. In 2011, Riess was awarded the Nobel Prize in Physics and the Albert Einstein Medal for his co-discovery of the accelerating rate of cosmic expansion – which led to the theory of “Dark Energy.” The team’s first look at Webb’s observations in 2023 confirmed that Hubble’s measurements of the expanding Universe were accurate.

Their latest analysis was based on Webb’s observations of over 1,000 Cepheids used as “anchors” in the distance ladder, eight Type Ia supernovae, and NGC 5468 – the farthest galaxy where Cepheids have been well measured, roughly 130 million light-years distant. As Riess stated in an ESA press release, these findings have erased any lingering doubt about measurement errors:

“With measurement errors negated, what remains is the real and exciting possibility that we have misunderstood the Universe. We’ve now spanned the whole range of what Hubble observed, and we can rule out a measurement error as the cause of the Hubble Tension with very high confidence.”

The Cosmic Distance Ladder visualized, showing the methods employed to measure the Hubble Constant. Credit: NASA, ESA, A. Feild (STScI), and A. Riess (STScI/JHU)

In particular, these findings have eliminated any lingering doubts that measurement inaccuracies might grow with distance. These inaccuracies would result from “stellar crowding,” where light from the Cepheids blended with that of adjacent stars. For many astronomers, the prospect of looking deeper into the Universe meant that these errors would become visible. Accounting for this effect is made all the more difficult thanks to intervening dust in the interstellar and intergalactic medium (ISM, IGM) that naturally obscures visible light.

Thanks to Webb’s sharp imaging capabilities at infrared wavelengths, astronomers can now see through the obscuring dust and get a clearer look at distant Cepheids. Combined with Hubble’s observations, the SH0E team determined that Hubble‘s observations were correct. As a result, said Riess, scientists are left with only one explanation for the Hubble Tension, which is that there is an unseen force responsible for how the cosmos is expanding:

“Combining Webb and Hubble gives us the best of both worlds. We find that the Hubble measurements remain reliable as we climb farther along the cosmic distance ladder. We need to find out if we are missing something on how to connect the beginning of the Universe and the present day.”

Next-generation telescopes will investigate this mysterious unseen force in the coming years by measuring its influence on cosmic expansion. This includes NASA’s upcoming Nancy Grace Roman Space Telescope and the ESA’s Euclid mission (which launched on July 1st, 2023). Paired with additional data obtained by Webb, these observations will allow astronomers to test “early Dark Energy” and other theories that attempt to explain the observations of Hubble and Webb. In the meantime, the so-called “crisis in cosmology” will persist, but perhaps not for long.

Further Reading: ESA

The post Webb Continues to Confirm That Universe is Behaving Strangely appeared first on Universe Today.

Categories: Science

NASA is Fixing its Link to Voyager 1

Fri, 03/15/2024 - 1:22pm

Voyagers 1 and 2 were, to put it simply, incredible. They were true explorers and unveiled many mysteries of the outer Solar System, revealing the outer planets in all their glory. Communication with Voyager 1 has until recently been possible, slow but possible. More recently however, it has been sending home garbled data rendering communication to all intents impossible although messages can still be sent. Engineers at NASA have narrowed the problem down to an onboard computer, the Flight Data System (FDS). A dump of the entire memory of the FDS has now been received so that engineers can attempt to troubleshoot and fix the issue. 

Voyager 1 was launched in 1977 on its groundbreaking mission around the outer Solar System. It’s primary mission to study Jupiter and Saturn up close and to explore the environmental conditions in the outer Solar System. In 1990 it took the iconic ‘pale blue dot’ image capturing the Earth from a distance of over 6 billion km. Voyager 1 carries with it a golden record containing the sounds and images of Earth as a message to any alien civilisations that happen to intercept it. 

  Hubble’s new look at Saturn on 12 September 2021 shows rapid and extreme colour changes in the bands in the planet’s northern hemisphere, where it is now early autumn. The bands have varied throughout Hubble observations in both 2019 and 2020. Hubble’s Saturn image catches the planet following the southern hemisphere’s winter, evident in the lingering blue-ish hue of the south pole.

Since November 2023, Voyage 1 has been transmitting a continuous signal to Earth but unfortunately this contains no useable data. It seems that the FDS on one of the three on board computers. The function of the system is to organise the engineering and science data before it gets sent back to Earth by the telemetry module. 

On the 1 March, the team issued a ‘poke’ command to Voyager which makes the FDS start to vary parameters and sequences in case of a corrupt section of code. The process was developed to safeguard against such occasions. 

The team at NASA working the problem detected activity on March 3 from a particular portion of the FDS that was different to the unusable data. The data received still wasn’t in the usual Voyager 1 format so the team had to explore further. One of the Deep Space Network engineers at NASA who was responsible for operating the radio equipment that communicates with Voyager managed to decode the signal. To their surprise they found the data contained a complete and more importantly readable dump from the entire FDS memory. 

The dump contained everything – hopefully – that the engineers needed to get to the bottom of the problem. It contained program code (which controls spacecraft operations, variables based on spacecraft commands or conditions along with scientific and engineering data too. The team are now focussing their attention on this code, meticulously comparing it with a dump from before the communication problems. They are looking to see if they can identify and isolate errors in the code that could point to the cause of the problem. 

It seems the new dump was a result of the ‘poke’ command. Unfortunately at the distance of Voyager 1, over 24 billion km, it takes over 22 hours for a signal to arrive. It then takes over 22 hours for the response to arrive here on Earth. Engineers started to decode the data on 7 March and it wasn’t until three days later they realised they had a complete data dump from FDS.

The teams continue to analyse the data, searching for the cause to lead them to a potential fix. When they do find the solution, it will take some time to implement but NASA are confident they can resolve the issue.

Source : NASA Engineers Make Progress Toward Understanding Voyager 1 Issue

The post NASA is Fixing its Link to Voyager 1 appeared first on Universe Today.

Categories: Science

The Cosmic Neutrino Background Would Tell Us Plenty About the Universe

Fri, 03/15/2024 - 10:55am

Readers of Universe Today are probably already familiar with the concept of the Cosmic Microwave Background (CMB). Its serendipitous discovery by a pair of radio astronomers at Bell Labs is the stuff of astronomical legend. Over the past decades, it has offered plenty of insights into the Big Bang and the origins of our universe. But there is another, less well-known background signal that could be just as revolutionary – or at least we think there is. The Cosmic Neutrino Background (CvB) has been posited for years but has yet to be found, primarily because neutrinos are notoriously difficult to detect. Now, a paper from Professor Douglas Scott of the University of British Columbia, developed as part of a summer school on neutrinos held by the International School of AstroParticle Physics in the Italian town of Varenna, discusses what we could potentially learn if we do manage to detect the CvB eventually.

The paper is written in a whimsical style and was released on arXiv, so it’s unclear whether it will be formally peer-reviewed (or if the peer reviewers will remove the picture of the “elephant in the room”). However, while it touches on some advanced mathematics, it mainly focuses on potential things we can learn from analyzing the CvB. 

Not surprisingly, many of those facts have much to do with neutrinos. We still don’t know a lot about them, as Dr. Scott points out in his introduction. Why are there three types? How do they compare to one another? And one particularly painful thing for particle physicists is what exactly their masses are. 

Fraser interviews Dr. Ned Wright about the origins of the CMB.

The CvB could provide insight into all three of those questions and even more about galaxy formation and the Big Bang itself. First, let’s tackle the weight of neutrinos. One of the biggest questions regarding weight is whether the masses of the three types of neutrinos are of a “normal” or “inverted” hierarchy. Those two states change which of the three types is the “smallest.” In the normal hierarchy, the mass of the third neutrino type is much more than the mass of the other two, which are almost equal. In the inverted hierarchy, the masses of the first two types are still equivalent but much more massive than that of the third type. 

Once data is collected on the CvB, astronomers can analyze the expected shape of the waveforms based on the assumption of either hierarchy, but figure out which one better fits the observable data. It is simple enough in astronomical terms, but collecting that data is still the hard part. However, if we can narrow down the equivalent masses of neutrinos, we could potentially calculate another fundamental cosmological parameter – the sum of all their masses. 

While that long-term goal is still a long way off, some larger-scale questions could be answered by simply understanding the CvB more generally. Measurements of the CvB can also be complicated by neutrinos from other sources, such as from other galaxies. If we understood the parameters of the CvB itself, we could eliminate that part of the signal, allowing us to more closely analyze neutrinos that were originally emitted from galaxies outside our own. With that insight, we could prove or disprove some assumptions about the early stages of galaxy formation, especially regarding the amount of energy they emit.

The CvB could contribute to our understanding of the Big Bang.

Given that neutrinos play a role in everything from our understanding of dark matter to fundamental questions about particle physics, it’s natural that more than one discipline is trying to determine these factors for themselves. Particle physicists, who rely on high-energy collisions in particle accelerators rather than fortuitous collisions from neutrinos created alongside the universe, also seek to understand their mass. Dr. Scott thinks that a collaboration between astronomers seeking to tease out the secrets of the CvB and particle physicists hoping to build enough of a case for the characteristics of these elusive particles from the ground up could be beneficial. Spending a few weeks in an Italian villa discussing the nuances of their fields certainly sounds like an excellent way to kick off that collaboration.

Learn More:
Scott – The Cosmic Neutrino Background
UT – Searching for the Supernova Neutrino Background to the Universe
UT – Neutrino Evidence Confirms Big Bang Predictions
UT – What is the Cosmic Microwave Background?

Lead Image:
Japan’s Super-Kamiokande neutrino detector

The post The Cosmic Neutrino Background Would Tell Us Plenty About the Universe appeared first on Universe Today.

Categories: Science

Mars Was Hiding Another Giant Volcano

Fri, 03/15/2024 - 10:35am

Olympus Mons is well known for being the largest volcano in the Solar System. It’s joined on Mars by three other shield volcanoes; Ascraeus, Pavonis and Arsia but a recent discovery has revealed a fifth. Provisionally called Noctis volcano, this previously unknown Martian feature reaches 9,022 metres high and 450 kilometres across. Its presence has eluded planetary scientists because it has been heavily eroded and is on the boundary of the fractured maze-like terrain of Noctis Labyrinthus. 

Mars seems to like shield volcanoes. They are a type of volcano that have a broad gently sloping profile and are generally composed of basaltic lava flows. The flows spread out over large distances during eruptions before eventually solidifying and creating long gently sloping faces. They tend to be the result of divergent plate boundaries where tectonic plates gently drift apart. It’s not just Mars that hosts them, here on Earth Mauna Loa and Mauna Kea in Hawaii are great examples of shield volcanoes.

Olympus Mons, captured by the ESA’s Mars Express mission from orbit. Credit: ESA/DLR/FUBerlin/AndreaLuck

Noctis volcano was found on the edges of Noctis Labyrinthus, a region whose name means Labyrinth of the Night. It’s a fascinating surface feature with a complex valley, canyon and ridge system within Valles Marineris. It’s a distinctive feature on the Martian surface with disorderly, intersecting valleys and plateaus. Thought to be the result of erosion and tectonic activity the region has masked the new volcano, until now. 

Noctis Labyrinthus on Mars as seen by Viking 1 orbiter. Courtesy NASA.

A team of scientists, led by SETI Institute planetary scientist Dr Pascal Lee said “We were examining the geology of an area where we had found the remains of a glacier last year when we realised we were inside a huge and deeply eroded volcano.” There were a number of signs that revealed the volcanic activity in the region and led to the volcano’s discovery. Located on the eastern edge of Noctis Labyrinthus there were a number of meseas – or flat topped mountains – arranged in an arc that seemed to reach a peak before descending away from an apparent summit area. A gentle slope softly slips away over distances of over 200km and close study seems to reveal the remains of a caldera. The study revealed what looked like a collapsed crater that once contained a lava lake and there was significant evidence of lava flows in the area including pyroclastic deposits. 

The study of Mars over the years since the invention of the telescope and more recently the advent of space flight has revealed a complex geological history. The features across the planet seem to reveal significant modification too perhaps from thermal erosion, glacial erosion and fracturing of the crust. 

The team conclude that the volcano is a shield volcano that has been built up of layers of accumulations of pyroclastic material, lava and ice. The ice it seems, just like volcanic lava, has built up over repeated years of snow and ice build up on the flanks of the volcano. With the fractures, likely driven by plate uplifts in the general Tharsis region, lava was able to seep through different regions of the volcano. Where the ice has been buried and subsequently melted, catastrophic collapses have occurred compounding the challenge of identifying it.

Source : Giant Volcano Discovered on Mars

The post Mars Was Hiding Another Giant Volcano appeared first on Universe Today.

Categories: Science

It's Time for Jupiter's Annual Checkup by Hubble

Fri, 03/15/2024 - 7:48am

Each year, the Hubble Space Telescope focuses on the giant planets in our Solar System when they’re near the closest point to Earth, which means they’ll be large and bright in the sky. Jupiter had its photos taken on January 5-6th, 2024, showing off both sides of the planet. Hubble was looking for storm activity and changes in Jupiter’s atmosphere.

The images are part of OPAL, the Outer Planet Atmospheres Legacy program. These yearly images provide a long-time baseline of observations of the outer planets, helping to understand their atmospheric dynamics and evolution as gas giants. Jupiter was at perigee — its closest point to Earth — back in November 2023.

Jupiter’s colorful clouds present an ever-changing medley of shapes and colors, as it is the stormiest place in the Solar System. Its atmosphere is tens of thousands of kilomters/miles deep, and this stormy atmosphere gives the planet its banded appearance. Here you can find cyclones, anticyclones, wind shear, and other large and fantastic storms.

The largest and most famous storm on Jupiter is the Great Red Spot. In the image on the left, you can see the Great Red Spot and a smaller spot to its lower right known as Red Spot Jr. The two spots pass each other every two years on average. In the right image, several smaller storms are rotating in alternating atmospheric bands.

“The many large storms and small white clouds are a hallmark of a lot of activity going on in Jupiter’s atmosphere right now,” said OPAL project lead Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

This 12-panel series of Hubble Space Telescope images, taken January 5-6, 2024, presents snapshots of a full rotation of the giant planet Jupiter. The Great Red Spot can be used to measure the planet’s real rotation rate of nearly 10 hours. The innermost Galilean satellite, Io is seen in several frames, along with its shadow crossing over Jupiter’s cloud tops. Hubble monitors Jupiter and the other outer solar system planets every year under the Outer Planet Atmospheres Legacy program. Credit: NASA, ESA, Joseph DePasquale (STScI).

NASA explains that the bands are produced by air flowing in different directions at various latitudes with speeds approaching 560 km/h (350 miles per hour). Lighter-hued areas where the atmosphere rises are called zones, while the darker regions where air falls are called belts. When these opposing flows interact, storms and turbulence appear.

Hubble tracks these dynamic changes every year (see a few of our previous articles about Hubble’s view of Jupiter here, here and here.) There is always lots of activity and changes taking place from year to year.

Toward the far-left edge of the right-side image is Jupiter’s tiny moon Io. The variegated orange color is where volcanic outflow deposits are seen on Io’s surface.

Side-by-side images show the opposite faces of Jupiter. The largest storm, the Great Red Spot, is the most prominent feature in the left bottom third of this view. Credit: NASA, ESA, Amy Simon (NASA-GSFC).

The post It's Time for Jupiter's Annual Checkup by Hubble appeared first on Universe Today.

Categories: Science

This is a 1.3 Gigapixel Image of a Supernova Remnant

Fri, 03/15/2024 - 6:37am

Stars more massive than the Sun blow themselves to pieces at the end of their life. Usually leaving behind either a black hole, neutron star or pulsar they also scatter heavy elements across their host galaxy. One such star went supernova nearly 11,000 years ago creating the Vela Supernova Remnant. The resultant expanding cloud of debris covers almost 100 light years and would be twenty times the diameter of the full Moon. Astronomers have recently imaged the remnant with a 570 megapixel Dark Energy Camera (DECam) creating a stunning 1.3 gigapixel image. 

The Vela supernova remnant is visible in long exposure photographs in the constellation Vela. It is the result of a star more massive than the Sun reaching the end of its life. As the progenitor star evolved the fusion deep in its core ceased. The lack of fusion means the cessation of the outward pushing thermonuclear force, the star instantly implodes under the immense force of gravity. The inward rushing material rebounds leading to the supernova explosions we see. The shockwave from the event is still travelling through the surrounding gas cloud thousands of years later. 

The image recently released is one of the largest images ever taken of the object with the DECam camera. The instrument, built by the Department of Energy, was mounted upon the 4 metre Victor M Blanco telescope in Chile. It reveals amazing levels of detail with red, yellow and blue tendrils of gas. The image was taken through three colour filters in a technique familiar to amateur astronomers. The filters capture specific wavelengths of light and are then stacked on top of each other during processing to reveal the stunning high resolution colour image. 

The Dark Energy Camera mounted on CTIO’s Blanco 4-meter telescope. Credit: DOE/FNAL/DECam/R. Hahn/CTIO/NOIRLab/NSF/AURA

Supernova explosions of this type take hundreds of thousands of years for the effects to dissipate however the core of the collapsed star does remain. As the star collapses, the core is compressed leaving an ultra dense sphere of neutrons, the result of protons and electrons having been forced together under extreme pressures. The Vela Pulsar is only a few kilometres across but contains as much mass as the Sun. The stellar remnant is rotating rapidly, sweeping out a powerful beam of radiation across the Galaxy at a speed of 11 times per second.  

Previous images from other instruments highlight the incredible capabilities of DECam.  Coupled up to the 4 metre telescope in Chile, it operates like a conventional camera. Light enters the telescope and is redirected back up the tube by the large mirror. The light passes into DECam, through a 1 metre corrective lens and then arrives at its final destination, a grid of 62 charge-coupled devices. These little sensor generate current dependent on the amount of light that falls upon them. With an array of these sensors (570 million of them to be exact), a high resolution image can be recreated!

Source : Ghostly Stellar Tendrils Captured in Largest DECam Image Ever Released

The post This is a 1.3 Gigapixel Image of a Supernova Remnant appeared first on Universe Today.

Categories: Science

Nancy Grace Roman will Map the Far Side of the Milky Way

Fri, 03/15/2024 - 3:29am

The Galaxy is a collection of stars, planets, gas clouds and to the dismay of astronomers, dust clouds. The dust blocks starlight from penetrating so it’s very difficult to learn about the far side of the Galaxy. Thankfully the upcoming Nancy Grace Roman telescope has infrared capability so it can see through the dust. A systematic survey of the far side of the Milky Way is planned to see what’s there and could discover billions of objects in just a month. 

The Nancy Grace Roman telescope (NGRt) has been named after NASA’s inaugural chief astronomer who was known as the ‘mother of the Hubble Space Telescope.’ It will have a field of view at least 100 times that of Hubble giving it an impressive swathe of space in each capture. Not only will it be able to peer through dust clouds, it also has the capability to block out starlight enabling direct observation of exoplanets and other infrared observations. 

The incredible resolution of NGRt will help to identify individual stars within interstellar dust clouds even at the far reaches of the Galaxy. It’s expected the observations will lead to the creation of an extensive stellar catalogue of stars previously unseen. Even the mapping observatory satellite Gaia (from the European Space Agency) didn’t have the mapping and precision available from NGRt which will surpass it tenfold. The extraordinary work of Gaia mapped over a billion stars within a distance of about 10,000 light years. NGRt will go a step further and map over 100 billion stars out to 100,000 light years! As far as our Galaxy is concerned, there’s not much out of NGRt’s reach. Even Spitzer, NASA’s infrared space telescope had surveyed the Galactic plane, it did not have the resolution to resolve stars on the far side of the Galaxy.

The Spitzer Space Telescope observatory trails behind Earth as it orbits the Sun. Credit: NASA/JPL-Caltech

In 2021 calls were made for ideas for surveys and the Galactic Plane Survey was the top ranking idea. It is now down to the scientific community to pull together observational projects to support the survey. It’s impressive to think that the survey will be targeting 1,000 square degrees of sky, equivalent to 5,000 full moons. That might not sound like too much but it would pretty much allow for all the stars in our Galaxy to be surveyed. That might sound like a lifelong piece of work but NGRt is a telescope that means business, knocking out the survey in around a month!

Other observatories could of course undertake similar projects but it would take years for even Hubble or James Webb Space telescope to achieve the same results. They are far more suited to studying external galaxies and we have seen some incredible images revealing complex galactic structure. Our own Galaxy has rather been overlooked, but it’s actually quite difficult to study our own! The entire sky needs to be observed and then there is the obscuring effect of dust. ‘We have studied our own Solar System’s neighbourhood well’ says Catherine Zucker, co-author of a white paper entitled ‘Roman Early-Definition Astrophysics Survey Opportunity’ and astrophysicist at the Center for Astrophysics Harvard & Smithsonian. ‘We have a very incomplete view of what the other half of what the Milky Way looks like beyond the Galactic centre.’ she went on to say. 

NGRt is due for launch in 2027 and, if all goes to plan, looks set to deliver not only some exciting science but the first time view of objects on the far side of the Galaxy.

Source :  NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side

The post Nancy Grace Roman will Map the Far Side of the Milky Way appeared first on Universe Today.

Categories: Science

Another Hycean Planet Found? TOI-270 d

Thu, 03/14/2024 - 10:22am

Hycean planets may be able to host life even though they’re outside what scientists consider the regular habitable zone. Their thick atmospheres can trap enough heat to keep the oceans warm even though they’re not close to their stars.

Astronomers have found another one of these potential hycean worlds named TOI-270 d.

The word hycean is a portmanteau of ‘hydrogen’ and ‘ocean’ and it describes worlds with surface oceans and thick hydrogen-rich atmospheres. Scientists think that they may be common around red dwarfs and that they could be habitable, although any life that exists on a hycean world would be aquatic.

Because they contain so much water, scientists think they’re larger than comparable non-hycean planets. Their larger size makes them easier targets for atmospheric study by the JWST. Though hycean worlds are largely hypothetical now, the JWST is heralding a new era in planetary science and may be able to show that they do exist.

The telescope’s ability to characterize exoplanet atmospheres could be the key to confirming their existence. Using transmission spectroscopy, the space telescope can watch as starlight travels through their atmospheres, revealing the presence of certain important chemicals and even biosignatures.

The exoplanet TOI-270 d could be a hycean world, and a new paper presents evidence supporting that. The paper is “Possible Hycean conditions in the sub-Neptune TOI-270 d,” and it’s published in the journal Astronomy and Astrophysics. The authors are Måns Holmberg and Nikku Madhusudhan, both from the
Institute of Astronomy at the University of Cambridge.

“The JWST has ushered in a new era in atmospheric characterizations of temperate low-mass exoplanets with recent detections of carbon-bearing molecules in the candidate Hycean world K2-18 b,” the authors write. That was an important discovery, and the authors of this paper say the JWST has more to show us about exoplanet atmospheres. In this work, the pair of researchers examined two sub-Neptunes in the TOI-270 system as they transited their M-dwarf. “We report our atmospheric characterization of the outer planet TOI-270 d, a candidate Hycean world, with JWST transmission spectroscopy…,” they write.

TOI-270 is an M-dwarf (red dwarf) star about 73 light-years away. Red dwarfs are known to sometimes flare violently, ruling out habitability on nearby planets. However, the authors describe TOI-270 as a quiet star. It hosts three sub-Neptune planets, and the pair of outermost planets, TOI-270 c and d, are both candidate hycean worlds. TOI-270 d is considered the strongest candidate.

TOI-270 d is about 4.2 Earth masses and measures about 2.1 Earth radii. It takes just over 11 Earth days to complete an orbit, a fact that aids atmospheric study. The Hubble Space Telescope looked at TOI-270 d recently, and its observations suggested a hydrogen-rich atmosphere with some evidence of H2O. Those results warranted further examination with the more powerful JWST.

Though scientists still haven’t proven that hycean worlds exist, they know something about their atmospheric chemistry. On an ocean world with a thick, hydrogen-rich atmosphere, scientists expect to find strong signatures of CH4 (methane) and CO2 and no evidence of NH3 (ammonia.) This is what the JWST found at K2-18b, though there is still uncertainty if that exoplanet is a hycean world.

This graphic shows what the JWST found in the atmosphere of K2-18 b, a suspected hycean world. Image Credit: NASA, CSA, ESA, J. Olmstead, N. Madhusudhan

Every planet is different, but each type should have things in common. “For Hycean worlds, the presence of an ocean below a thin H2-rich atmosphere may be inferred by an enhancement of CO2, H2O, and/or CH4, together with a depletion of NH3,” the authors write. Since TOI-270 d is a candidate hycean world, its spectroscopy should be similar to other hycean candidates like K2-18b. “Therefore, for the Hycean candidate TOI-270 d, observations of these key carbon-, nitrogen-, and oxygen- (CNO) bearing molecules are required to assess whether or not it is a Hycean world,” the paper’s authors explain.

In October of 2023, the JWST observed TOI-270 b and d during two transits. The observations amounted to a total exposure time of 5.3 hours. “This rare event allows for transmission spectroscopy of both planets,” the authors write.

This figure from the study shows the spectra from both the Hubble Space Telescope and the JWST. The prominent molecules responsible for the features in different spectral regions are labelled. Image Credit: Holmberg and Madhusudhan 2024.

“Our atmospheric retrieval results support the inference of an H2-rich atmosphere on TOI-270 d and provide valuable insights into the abundances of dominant CNO molecules,” the authors explain. Furthermore, the abundances are similar to what the JWST found on K2-18 b, another suspected hycean world.

But when it comes to water, the results are less certain. “We found only tentative evidence of H2O, with the detection significance and abundance estimates varying…,” the authors write. The detection and abundance of H2O were more strongly dependent on what method the researchers used to analyze the data.

The appearance of CS2 (carbon disulphide) in TOI-270 d’s atmosphere is intriguing. It’s considered a detectable biomarker in hycean world atmospheres, as well as in hydrogen-rich atmospheres of rocky worlds, although the direct sources could also be volcanic or photochemical.

The atmospheric spectrum also contains hints of C2H6 (ethane.) Ethane can be a byproduct of photochemical reactions involving methane and other gases, including biogenic ones. Its presence is another indication that methane is present. The researchers also point out that the abundances of ethane and carbon disulphide are well above theoretical predictions. “More observations are required to robustly constrain the presence and abundances of both molecules,” they write.

All the researchers can conclude is that TOI-720 d is a candidate hycean world. But while the previous HST observations that hinted at its status showed the presence of H2O in an H2-rich atmosphere, the JWST observations provide more depth. The JWST’s more robust detections of CH4 and CO2, along with its non-detection of NH3, makes it an even stronger hycean world candidate.

“The planet stands out as a promising Hycean candidate, consistent with its initial predictions as a world with the potential for habitable oceans beneath an H2-rich atmosphere,” the authors conclude.

The post Another Hycean Planet Found? TOI-270 d appeared first on Universe Today.

Categories: Science

Starship Reaches Orbit on SpaceX’s Third Test but Breaks Up on Re-Entry

Thu, 03/14/2024 - 8:54am

After falling short in its first two attempts, SpaceX got its Starship super-rocket to an orbital altitude today during the launch system’s third integrated flight test. Now it just has to work on the landing. 

Today’s test marked a major milestone in SpaceX’s effort to develop Starship as the equivalent of a gigantic Swiss Army knife for spaceflight, with potential applications ranging from the deployment of hundreds of Starlink broadband satellites at a time to crewed odysseys to the moon, Mars and beyond.

The 396-foot-tall (120-meter-tall) rocket lifted off from SpaceX’s Starbase facility in South Texas at 8:25 a.m. CT (1325 GMT), with all 33 of the first-stage booster’s methane-fueled Raptor engines firing. The Super Heavy booster is considered the world’s most powerful launch vehicle, with 16.7 million pounds of thrust at liftoff.

Minutes after launch, the rocket’s second stage — known as Ship — successfully executed a hot-staging operation to start up its six engines while still attached to the Super Heavy booster. After stage separation, Ship continued onward at orbital velocity to an altitude of about 140 miles (230 kilometers). Meanwhile, the booster began a series of burns that were meant to bring it down to a soft splashdown in the Gulf of Mexico.

The Super Heavy splashdown turned out to be not as soft as SpaceX hoped. Only a few of the booster’s engines were able to light up again for the intended landing burn. The last telemetry from the booster seemed to suggest that it hit the water at almost 700 mph (1,112 kilometers per hour). “We didn’t light all the engines that we expected, and we did lose the booster,” SpaceX commentator Dan Huot said during today’s webcast. “We’ll have to go through the data to figure out exactly what happened, obviously. … But wow, Ship in space!”

For more than 40 minutes, a camera on the second stage transmitted stunning views of Earth as seen from an orbital height. SpaceX also tested the opening and closing of a payload door that’s meant to be used for satellite deployment in orbit — and tried out a refueling procedure that involved transferring liquid oxygen between tanks.

The flight plan for this test didn’t call for doing a complete orbit. Rather, the trajectory was designed to have Ship come down for its own soft splashdown in a remote stretch of the Indian Ocean.

The climax of the descent came when Ship’s onboard camera captured the glow of plasma generated by the craft’s descent at speeds in excess of 16,500 mph (26,700 kilometers per hour). The atmospheric heating was expected to reach 2,600 degrees Fahrenheit (1,425 degrees Celsius).

“We’ve never seen anything like this before,” SpaceX commentator Kate Tice said of the fiery real-time video, which was transmitted down to Earth via SpaceX’s Starlink network.

SpaceX founder Elon Musk marveled at the sight in a posting to X / Twitter, the social media channel he owns:

Watch the super hot plasma field grow as Starship re-enters the atmosphere! pic.twitter.com/to4UOF2Kpd

— Elon Musk (@elonmusk) March 14, 2024

A few minutes into the descent, SpaceX lost the signal from Ship — and the prolonged silence led SpaceX’s mission controllers to assume that the ship was lost during re-entry. It’s possible that the second stage’s engines weren’t able to fire properly to reduce the speed of the descent. The mission team will have to analyze the data to determine what went wrong.

“No splashdown today,” Huot said. “But it’s incredible to see how much further we got this time around.”

Huot emphasized that the aim of today’s test was to learn how to improve future Starships, and eventually make them reusable. “The data is the payload on one of these flights,” he said.

SpaceX is already getting ready for the next test flight, and the ones after that. “Hopefully, at least 6 more flights this year,” Musk said in a pre-launch X / Twitter posting. The precise timing will depend on approvals from the Federal Aviation Administration.

NASA is depending on SpaceX to provide a version of Starship that would serve as the landing system for the Artemis program’s first crewed mission to the lunar surface, currently set for 2026. Today, NASA Administrator Bill Nelson congratulated SpaceX on its “successful test flight.”

“Starship has soared into the heavens,” Nelson wrote on X / Twitter. “Together, we are making great strides through Artemis to return humanity to the Moon — then look onward to Mars.”

Musk has pointed to Starship as the vehicle that could carry thousands of settlers to Mars in years to come — and he touched upon that theme again after today’s test flight.

“Starship will make life multiplanetary,” he wrote.

The post Starship Reaches Orbit on SpaceX’s Third Test but Breaks Up on Re-Entry appeared first on Universe Today.

Categories: Science

NASA and Boeing Release New Rendering of their X-66 Sustainable Experimental Airliner

Wed, 03/13/2024 - 5:48pm

Climate change is arguably the single greatest threat facing the world today. According to the Sixth Assessment Report (AR6) by the UN Intergovernmental Panel on Climate Change (IPCC), average global temperatures are set to increase between 1.5 and 2 °C (2.7 to 3.6 °F) by mid-century. To restrict global temperatures to an increase of 1.5 C and avoid the worst-case scenarios, the nations of the world need to achieve net zero emissions by then. Otherwise, things will get a lot worse before they get better, assuming they ever do.

This means transitioning to cleaner methods in terms of energy, transportation, and aviation. To meet our climate commitments, the aviation industry is developing technology to significantly reduce air travel’s carbon footprint. To help meet this goal, NASA and Boeing have come together to create the X-66 Sustainable Experimental Airliner, the first experimental plane specifically focused on helping the U.S. achieve net-zero aviation. Last week, NASA released a new rendering of the concept, giving the public an updated look at the future of air travel.

This configuration is identical to the one unveiled by NASA and Boeing at the Experimental Aviation Association‘s (EAA) AirVenture Oshkosh airshow last year. As you can see from the renderings (above and below), the design features the Transonic Truss-Braced Wing concept. Developed by Boeing, this design features extra-long, thin wings stabilized by diagonal struts. This configuration is based on “Subsonic Ultra-Green Aircraft Reach (SUGAR)” research, a series of studies that began in 2011 to evaluate the benefits of truss-bracing and hybrid electric technologies.

The X-66A is the X-plane specifically aimed at helping the United States achieve the goal of net-zero greenhouse gas emissions by 2050. Credits: NASA

Combined with an advanced propulsion system, a sophisticated systems architecture, and advanced materials, this configuration could reduce fuel consumption and the resulting emissions by up to 30% (compared to top-of-the-line commercial aircraft). Development of the X-66 began in early 2019 through the Sustainable Flight Demonstrator (SFD) project, which is an integral part of NASA’s Sustainable Flight National Partnership (SFNP) – where NASA Aeronautics partners with industry, academia, and other agencies to accomplish the goal of net-zero aviation by 2050.

To build the X-66A, Boeing has been working with NASA to modify a McDonnell Douglas MD-90 single-aisle passenger aircraft. Modifications include a shortened fuselage and the replacement of its wings with the longer, thinner truss-braced variant. The engines have also been relocated from the tail section to under the wings and replaced with gas-electric models. Boeing transported the MD-90 aircraft to its facility in Palmdale, California, in August of 2023 and has since removed its engines and completed the 3-meter (10-foot) model wing they will use for aerodynamic testing.

The project’s ultimate goal is to inform a new generation of more sustainable, single-aisle aircraft, which account for the largest share of air travel worldwide. The program is also part of the U.S. Aviation Climate Action Plan, which seeks to not only meet the nation’s ambitious climate goals but also to improve the quality of life for those living near airports and under flight paths through reductions in noise and pollutants. As NASA Administrator Bill Nelson remarked in a press statement last year:

“At NASA, our eyes are not just focused on stars but also fixated on the sky. The Sustainable Flight Demonstrator builds on NASA’s world-leading efforts in aeronautics as well [as] climate. The X-66A will help shape the future of aviation, a new era where aircraft are greener, cleaner, and quieter, and create new possibilities for the flying public and American industry alike.”

Further Reading: NASA

The post NASA and Boeing Release New Rendering of their X-66 Sustainable Experimental Airliner appeared first on Universe Today.

Categories: Science

Webb Sees a Star-Forming Region Blowing Vast Bubbles

Wed, 03/13/2024 - 3:04pm

Star birth is a messy and chaotic event. Some of the process remains well hidden behind clouds of gas and dust that make up star-forming regions. However, part of it happens in wavelengths of light we can detect, such as visible light and infrared. It’s an intricate process that the Webb telescope (JWST) can study in detail.

Recently this infrared-sensitive space observatory zeroed in on a portion of a star-forming region called NGC 604 in the Triangulum galaxy and returned a pair of amazing images. The telescope’s Near-infrared Camera (NIRCam) image shows gas bubbles, and tendrils and wisps of glowing material lit up by more than 200 hot, young massive stars. Some of those stars are probably at least 100 times the mass of the Sun. Finding so many of them in such a small area of space is a rare occurrence.

JWST’s mid-infrared instrument (MIRI) identified glowing clouds of gas and dust in NGC 604 and a collection of red supergiant stars in the surrounding galaxy region. They’re cool and ancient, and most are hundreds of times the diameter of the Sun.

JWST Reveals the Chemistry of a Star-forming Region

As cool as these images look, the chemistry they reveal is amazing. Orange-colored streaks in the NIRCam image indicate the presence of polycyclic hydrocarbons (PAHs). These carbon-based molecules play a big role in star- and planet-forming processes. Here on Earth they’re pretty commonly found in coal, oil, gasoline, and as a by-product of burning these substances. Obviously, coal, gasoline, and burning garbage don’t exist in outer space. However, pure PAHs do, and they’re a good tracer of star formation. So, it’s not a surprise to find them in this particular nebula.

Deep red regions in the nebula are pockets of molecular hydrogen. That’s the basic building block of stars. In other places, hot young stars have ionized hydrogen gas, which appears white in the image. The MIRI images also show the distribution of cool gas and dust throughout the nebula, and blue tendrils identify the presence of more PAHs.

The view of NGC 604 from JWST’s MIRI instrument. Notice the difference in view from NIRCam. Each part of the infrared spectrum reveals different features in the clouds of gas and dust. Credit: NASA, ESA, CSA, STScI Dynamics of Star Birth

The chaotic part of star birth comes as hot young stars are born. They directly affect the stellar nursery by emitting copious amounts of ultraviolet radiation into space. That ionizes (heats) the surrounding birth clouds and causes them to glow. The stellar newborns also blow hot stellar winds like gas bubbles out around them. That carves out caverns in the dusty birth cloud and creates those tendrils.

The creation of stars gobbles up immense amounts of gas and dust. The most massive stars, like the ones seen in these images, basically clear out the region. That also shuts down (or severely stunts) future star formation. Eventually, the process of stellar creation will play itself out here, leaving behind clusters of massive, hot young stars, along with smaller more sun-like stars and even a few brown dwarfs.

About the NGC 604 Star-forming Region

NGC 604 is a pretty typical star birth creche, similar to the Orion Nebula in our own Milky Way Galaxy. It’s fairly extensive—it measures about 1,300 light-years across (much larger than the Orion star-birth complex) and lies about 2.7 million light-years away from us. The cloud has been making baby stars for at least 3.5 million years. Compare that to the Orion Nebula, which is about 1,400 light-years away from us and has been cranking out stars for about 3 million years. Its brightest stars lie in the Trapezium at the heart of the nebula. Many of Orion’s stars are quite young—only about 300,000 years old. The nebula also has a collection of brown dwarfs, as well as protoplanetary disks that harbor newly forming protostars.

NGC 604 in Galaxy M33 as seen by Hubble Space Telescope.

JWST isn’t the first space telescope to study this region of space. The Hubble Space Telescope has looked at it often, beginning in the 1990s, and the Chandra X-Ray Observatory has traced its superheated stars in X-ray wavelengths. Ground-based observatories such as the Atacama Large Millimeter Array (ALMA), and others have long studied this region to gather as much information as possible about the structure of this nursery and its stars.


The starbirth process can take anywhere from 10,000 to 100,000 years for the highest-mass stars to millions of years for less-massive ones. So, when we look at a star-birth region, we’re looking at a fairly short-lived phenomenon in the overall 13.7 billion-year-long history of the Universe. That’s why astronomers are interested in learning more about the process, particularly in other galaxies such as the Triangulum.

For More Information

Peering Into the Tendrils of NGC 604 with NASA’s Webb
The Formation of Stars

The post Webb Sees a Star-Forming Region Blowing Vast Bubbles appeared first on Universe Today.

Categories: Science

What Can We Learn Flying Through the Plumes at Enceladus?

Wed, 03/13/2024 - 12:09pm

In the next decade, space agencies will expand the search for extraterrestrial life beyond Mars, where all of our astrobiology efforts are currently focused. This includes the ESA’s JUpiter ICy moon’s Explorer (JUICE) and NASA’s Europa Clipper, which will fly past Europa and Ganymede repeatedly to study their surfaces and interiors. There’s also NASA’s proposed Dragonfly mission that will fly to Titan and study its atmosphere, methane lakes, and the rich organic chemistry happening on its surface. But perhaps the most compelling destination is Enceladus and the lovely plumes emanating from its southern polar region.

Since the Cassini mission got a close-up look at these plumes, scientists have been aching to send a robotic mission there to sample them – which appear to have all the ingredients for life in them. This is not as easy as it sounds, and there’s no indication flying through plumes will yield intact samples. In a recent paper, researchers from the University of Kent examined how the velocity of a passing spacecraft (and the resulting shock of impact) could significantly affect its ability to sample water and ice within the plumes.

The research was conducted by Prof. Mark Burchell and Dr. Penny Wozniakiewicz (an Emeritus Professor and a Senior Lecturer in Space Science) from the Centre for Astrophysics and Planetary Science (CAPS), part of the School of Physics and Astronomy at the University of Kent, UK. Their work could have significant implications for missions to Icy Ocean Worlds (IOW), bodies in the outer Solar System composed predominantly of frozen water and volatiles with oceans in their interior. These bodies have become of increasing interest to scientists since it is possible some could support life.

The term “Ocean Worlds” has become common in recent years as the number of potential candidates for exploration has increased. Since the Voyager probes passed through the system in 1979, scientists have speculated about the possibility of an interior ocean within Europa based on its surface features. This included patches of “young terrain” sitting next to older, cratered terrain – indicative of regular exchanges between the surface and interior. The Voyager probes noticed similarly youthful terrain on Enceladus when they few past Saturn in 1980 and 81 (respectively).

However, it was the Cassini-Huygens mission that discovered water vapor and organic molecules venting from the Enceladus’ southern polar region in 2004. Over the next thirteen years, the Cassini orbiter conducted several more flybys of the moon, yielding additional evidence of an interior ocean and an energy source at the core-mantle boundary. These findings placed Enceladus among the “Ocean Worlds” that scientists want to examine more closely with future missions. But unlike other IOWs, Enceladus is particularly attractive because of the nature of the plumes around its south pole.

Whereas Europa also experiences plume activity, these are more sporadic and difficult to detect. Due to Europa’s higher gravity (~13% vs. 1% of Earth’s), water vapor and vented material don’t reach nearly as far into space. As Burchell told Universe Today via email, collecting samples from these plumes seems relatively simple, at least in theory. “Like all IOWs, it has an internal ocean with lots of water. What is in that water is the subject of much speculation and interest,” he said. “And Enceladus ejects plumes of water into space, making any space mission that wants to sample the water much easier – you can just fly through the plume.”

However, in the realm of practice (as always), things get a little more complicated. Depending on how fast a mission is traveling, the impact it will inflict upon plume material will vary considerably. As Burchell explains, this could jeopardize the very samples a mission was trying to obtain:

“The problem with collecting samples at speed is that a lot of testing has been done with metal and mineral projectile, but less is known about the response of organics to the high-speed impacts. The bonds in the organics will break, but at what speed? And which bonds first? So what you end up with for analysis may not be what came out of Enceladus. But with what biases? What degree of alteration? Understanding this is essential to any successful collection of samples.”

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/SwRI

According to Burchell, modeling how a spacecraft’s velocity would affect its ability to collect samples can be accomplished in one of two ways. On the one hand, there’s the computer modeling approach, where teams rely on advanced software to simulate impacts and measure the results. The other is the “kinetic” approach, which consists of firing small grains at targets at the right speeds and then measuring the force of impact. Burchell and his team prefer to do the latter. “In our lab, we like firing things at targets,” he said.

Their results clearly showed that the collection speed is critical to sample collection. However, they also found that the results vary from one body to the next. Said Burchell:

“In an orbit at a small body like Enceladus, it is fairly low. But for the larger IOWs, it is greater. And it just gets into the regime where the shock of the impact process in the collection causes increasingly severe alteration to the samples. If you do a flypast of the IOW without orbiting it, you are faster again, and the samples experience a greater shock. It suggests a low-speed orbital collection is best for un-shocked, minimally processed samples. But that needs more spacecraft design and restricts the other science you could do. It is always a tradeoff.”

Without the Solar System, there are several bodies where water and other volatiles are vented from the interior – a phenomenon known as cryovolcanism. These bodies vary considerably in terms of their size and gravitational pull, ranging from the microgravity (less or slightly more than 1%) of Mimas and Enceladus to the roughly 13-15% of Europa, Titan, and Ganymede. As a result, these findings could help inform the design of many sample-collection missions destined for IOWs.

Further Reading: Meteoritics & Planetary Science

The post What Can We Learn Flying Through the Plumes at Enceladus? appeared first on Universe Today.

Categories: Science

NASA Announces its 2025 Budget. Lean Times Ahead.

Wed, 03/13/2024 - 9:53am

Space flight is an expensive business and that money has to come from somewhere. The White House has just released their budget for fiscal year 2025. What does that mean for NASA?, they will get $25.4 billion, the same as it received last year but $2 billion less than it requested. NASA Administrator Bill Nelson said the constraints come from a debt ceiling agreement that limits non-defence spending. Alas the $2 billion deficit means NASA will need to cut costs from various missions.

Nelson went on to put the blame squarely on a small handful of people in the House of Representatives. It was his opinion that they would only agree to raising the debt ceiling (the maximum amount of money the US Government can spend) if spending caps were implemented. Whilst the deficit in this years budget is $2 billion, for NASA that means a lot. Their budget figures included $7.6 billion for science so NASA will have to look long and hard at their upcoming missions and spend over the next year to see what costs can be cut. 

One of the projects that looks like it may be cancelled is the Geospace Dynamics Constellation mission. It plans to accomplish breakthroughs in our understanding of the processes that govern the dynamics of the Earth’s upper atmosphere. The layer is the region that is on the very boundary of space and includes the ionosphere and components of the thermosphere. 

The Earth System Observatory series of missions looks set to be restructured under the new budget too. The project is a joint enterprise with the Japanese Space Agency and, in an endeavour to preserve the partnership, NASA are assessing their options. These may focus on aerosol and cloud convection and precipitation studies. 

Sadly this reduction also means NASA will have to reduce spending on Hubble Space Telescope and Chandra X-Ray telescope. Given that Hubble has surpassed its original goals ten fold it is perhaps no surprise its no the list of cuts with a 5% reduction in spend. The reductions for Chandra are more substantial with $68.3 million last year reducing to $41.1 million. Over the period of its operational mission, several of the systems are degrading and require active management to keep ticking along. This means Chandra will undertake minimal operations to account for the cuts.

The Mars Sample Return (MSR) mission is now under scrutiny given the budget costs. The original budget proposal for planetary science was $2.7 billion but this lists only as TBD for MSR. A sad day given that the Perseverance Rover has been trundling around Mars collecting samples ready for MSR to collect and return to Earth. The mission is under review which should conclude by end March. 

Thankfully it seems the Artemis program is unaffected with the full amount requested being received. There will be one tiny change though, Artemis 5 (which will be using the Blue Origin Lunar Lander for the first time) will slip back half a year to March 2030. 

In the grand scheme of things and the challenges facing governments the world over, perhaps NASA should be content with only losing $2 billion of their overall ask. As Nelson said “the current situation was not as bad for the agency as was the case a decade ago, when a budget sequestration made deeper cuts” he went on to say “I’d say this is mild by comparison back then”.

Source : President’s NASA FY 2025 Funding Supports US Space, Climate Leadership and NASA chief Bill Nelson promises a ‘fight’ for agency’s 2025 budget request

The post NASA Announces its 2025 Budget. Lean Times Ahead. appeared first on Universe Today.

Categories: Science

A 790,000 Year-Old Asteroid Impact Could Explain Seafloor Spherules

Wed, 03/13/2024 - 9:53am

Our solar system does not exist in isolation. It formed within a stellar nursery along with hundreds of sibling stars, and even today has the occasional interaction with interstellar objects such as Oumuamua and Borisov. So it’s reasonable to presume that some interstellar material has reached Earth. Recently Avi Loeb and his team earned quite a bit of attention with a study arguing that it had found some of this interstellar stuff on the ocean seabed. But a new study finds that the material has a much more local origin.

The original study is based on a 2014 meteor that entered the Earth’s atmosphere off the coast of Papua New Guinea. Observations of its impact trajectory suggested it might have been extraterrestrial in origin. And since we had an idea of where it hit, why not look for its debris? This led Loeb’s team to the seafloor near Papua New Guinea, where they found small, iron-rich spheres known as spherules. The study analyzed the composition of these spherules and found the isotope distribution was so unusual they must have an interstellar origin.

The iron isotopes of these spherules show a local origin. Credit: Desch, et al

While that sounds compelling, there are a few caveats. The first is that the trajectory of the 2014 meteor isn’t that precisely known. We know the general impact region, but the data simply isn’t good enough to prove that these spherules came from this particular meteor. The second is that “unusual” isotopes aren’t uncommon within our solar system. As the new study shows, there is a distribution of iron isotope ratios for objects originating in the solar system, specifically the ratios of 57Fe and 56Fe. The ratio for the “alien” spherules is well within that range. So well that the odds of them being interstellar is less than 1 in 10,000. So these spherules have a local origin.

But they were likely formed from an impact event, so this new study went further. Is there a known impact from which these spherules originated? Turns out there is. The region in which they were found is part of what’s known as the Australasian tektite strewn field. It is a vast field that spans southeast Asia to Antarctica and was caused by a large impact 790,000 years ago. The team looked at other isotope ratios and found they are consistent with other known Australasian tektites.

So these particular spherules have a local origin. But that doesn’t mean interstellar meteorites don’t exist. Given what we know, there are almost certainly interstellar objects on Earth just waiting to be found. We just have to keep looking for them.

Reference: Loeb, A., et al. “Recovery and Classification of Spherules from the Pacific Ocean Site of the CNEOS 2014 January 8 (IM1) Bolide.” Research Notes of the AAS 8.1 (2024): 39.

Reference: Desch, Steve. “Be, La, U-rich spherules as microtektites of terrestrial laterites: What goes up must come down.” arXiv preprint arXiv:2403.05161 (2024).

The post A 790,000 Year-Old Asteroid Impact Could Explain Seafloor Spherules appeared first on Universe Today.

Categories: Science

Ultrablack Coating Could Be Ideal for Telescopes

Wed, 03/13/2024 - 6:53am

If you, like me, have dabbled with telescope making you will know what a fickle friend light can be. On one hand you want to capture as much as you can (but only from the object, not from nearby lights) and want to reflect or refract it to the point of observation or study.  What you most certainly don’t want is stray light to be bounced around inside the telescope so components (except the mirror!) are sprayed as black as possible. Unfortunately black paints tend to be quite susceptible to damage and struggle to cope with the harsh conditions and cold temperatures telescopes are subjected to. A team has recently developed a new atomic-layer deposition method which absorbs 99.3% of light and is durable too. 

A team of scientists from the University of Shanghai for Science and Technology and the Chinese Academy of Sciences have recently published a paper in the Journal of Vacuum Science and Technology. The paper announces that they have engineered an ultrablack thin-film coating which boasts the remarkable light absorption rate of 99.3%. The technique is tailored for coating aerospace grade magnesium alloys (not a lot of help for my telescope but there is hope) and the result is a coating that is durable and capable of withstanding harsh environmental conditions. 

Of course, this is designed for telescopes operating in the harsh environment of space rather than the cold winter nights of Norfolk in the UK but it will certainly help with professional observatories atop mountains too. Current coatings like vertically aligned carbon nanotubes or black silicon tend to be easily damaged needing repair and leaving contamination that has to be carefully managed. 

Another problem is the often difficult and intricate shapes and curves that the black coatings are to be deposited upon. To overcome these problems, the team explored atomic layer deposition (ALD). Items to be coated are paced in a vacuum chamber and exposed to different gasses in sequence which will adhere to the object’s surface in thin layers. It’s a technique not too dissimilar to aluminising a telescope mirror that is placed inside a vacuum chamber before allowing the aluminium to be deposited on the mirror surface. 

The vacuum coating method is far easier to apply to intricate shapes than previous techniques. To build up the layers, the process uses alternating layers of aluminium mixed with titanium carbide and silicon nitride. The two materials work well together to stop nearly all light from reflecting off the coated surface. 

During the test phase, the team tested wavelengths of light from violet light at 400 nanometers to near infrared at 1,000 nanometers and found average absorption levels over 99% across all wavelengths. The coating seems to withstand heat, friction, damp and extreme changes in temperature well so it is most certainly suited to space instrumentation. The team haven’t given up yet though, they are now working to improve the performance of the material. 

Source : Ultrablack coating could make next-gen telescopes even better

The post Ultrablack Coating Could Be Ideal for Telescopes appeared first on Universe Today.

Categories: Science

Are Andromeda and the Milky Way Already Exchanging Stars?

Wed, 03/13/2024 - 6:27am

I often drag out the amazing fact that the Andromeda Galaxy, that faint fuzzy blob just off the corner of the Square of Pegasus, is heading straight for us! Of course I continue to tell people it won’t happen for a few billion years yet but a recent study suggests that we are already seeing hypervelocity stars that have been ejected from Andromeda already. It is just possible that the two galaxies have already started to exchange stars long before they are expected to merge. 

We tend to think of stars as stationery objects in the sky, except for their slow westward drift across the sky as the Earth rotates. The reality is different though, stars do move but due to the vast distances in interstellar space, that motion is largely not noticeable. There are exceptions such as Barnard’s star in the constellation Ophiuchus. This inconspicuous red dwarf star moves 10.39 seconds of arc each year (by comparison, the full Moon is 1,900 seconds or arc in diameter.)

Another type of star can be observed, hypervelocity stars (HVSs), and these are among the fastest objects in the Galaxy. They are defined as stars that have a velocity which is of the order 1,000 km per second and by comparison, the Earth travels through space at a velocity of around 30 km per second! The first was discovered in 2005 but since then a number of HVSs have been found, and some of them have the potential to escape from the Milky Way. 

Typically the motion of stars is the result of their motion around the centre of a galaxy. Our own star the Sun, takes 220 million years to complete one orbit of the centre of the Milky Way. The origin of the HVSs high velocity is believed to stem from gravitational interactions between binary stars and black holes. The idea was proposed by Jack Gilbert Hills is a stellar dynamicist, born on 15 May 1943. In this process, a black hole (stellar or the supermassive black hole at Galactic centre) captures one of a binary star system while the other gets ejected at high velocity. Other theories include ejection of one of a binary star system when the other goes supernova or from galactic interactions.

To understand the interactions between the Milky Way and the Andromeda Galaxy the team (led by Lukas Gülzow from the Institute for Astrophysics in Germany) had to go through painstaking analyses. First they had to understand the relative motion fo the two galaxies, they then had to model the gravitational potential of the entire system – this is the total acceleration acting upon an object at any position in either of the galaxies at any time. Finally the team could generate simulations of stellar motion to model the HVSs trajectories. 

The study calculated the trajectories of 18 million HVSs for two different scenarios taking into account the two galaxies having equal mass and the other with the Milky Way having about half the mass of the Andromeda Galaxy. The starting positions of the HVSs in the simulation were randomly generated around the centre of Andromeda. The ejection directions were random and the results showed that 0.013 and 0.011 percent of HSVs are now within a radius of 50kpc around the Milky Way centre. 

The explored the velocity of HVSs on arrival with both galaxy mass simulations and found that many approximately retain their initial velocity. Interestingly due to the time taken for the journey, a significant proportion may well evolve off the main sequence during their journey. Some of the HVSs slow down sufficiently to be captured by the Milky Way.

Artist impression of ESA’s Gaia satellite observing the Milky Way (Credit : ESA/ATG medialab; Milky Way: ESA/Gaia/DPAC)

The team mapped the simulated position of stars against the sky and ran the data against high velocity star positions from Gaia data (Release 3) and found the simulated position distribution consistent with the Gaia data. The study concludes that it is highly likely that HVSs from Andromeda could indeed migrate to the Milky Way. Whilst they are not expected in their thousands, they are expected to distribute equally around the Milky Way centre. It might even be possible to detect them based on stellar velocity and trajectories but further studies are now required to take that next step. 

Source : On Stellar Migration from Andromeda to the Milky Way

The post Are Andromeda and the Milky Way Already Exchanging Stars? appeared first on Universe Today.

Categories: Science

Colliding Neutron Stars are the Ultimate Particle Accelerators

Wed, 03/13/2024 - 6:09am

Gamma-ray telescopes observing neutron star collisions might be the key to identifying the composition of dark matter. One leading theory explaining dark matter it that is mostly made from hypothetical particles called axions. If an axion is created within the intensely energetic environment of two neutron stars merging, it should then decay into gamma-ray photons which we could see using space telescopes like Fermi-LAT.

About 130 million years ago, a pair of neutron stars collided violently. The powerful gravitational waves from the impact radiated outwards at the speed of light, followed shortly after by a tremendous flash of radiation. On 17 August 2017, the gravitational waves reached Earth, and were detected by both detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States, and the Virgo interferometer in Italy. This event was named GW170817. Mere seconds later, the Fermi-LAT gamma ray telescope recorded a burst of gamma rays in the same region of sky. Over the next few days, other telescopes saw and recorded the event in visible light and other wavelengths. This marked the first ever multi-messenger observation of two neutron stars merging.

What is an axion?

One of the leading theories around the composition of dark matter is that it is mostly made from a hypothetical particle called an axion. If enough axions were created in the big bang, and if their masses fall within a specific range, then they could account for much of the dark matter shaping the universe today. Unfortunately, axions have never been observed, and nobody has yet confirmed whether they even exist. But according to Dr Bhupal Dev of Washington State University, axions and axion-like particles (ALPs) could be created within the extreme conditions of a neutron star collision, and we might be able to see their signature from Earth.

An artist’s depiction showing how an ALP (dashed line), after being produced in the NS merger, escapes and decays outside the merger environment into photons, which can be detected by the Fermi satellite (or future MeV gamma-ray telescopes.

Physicists have spent decades trying to solve the mystery of dark matter. It seems likely that it could be made mostly from axions and axion-like particles, but these particles are still only hypothetical. The axion was first proposed in 1977, as a solution to the Strong CP Problem, but has yet to be confirmed.

Theory predicts, however, that axions can be briefly created by passing high-energy photons through a powerful magnetic field. These axions last for a short while, then decay back into a pair of gamma-ray photons. A number of experiments are being conducted around the world, using this phenomenon to try and create axions, and watching for the gamma radiation of their decay. Others, like the Axion Dark Matter eXperiment (ADMX) are looking for naturally existing axions by using a similar process to convert them into microwave photons.

But there are lots of places in the Universe where axions can be created in this manner, including the cores of stars, around magnetars, and anywhere else with strong magnetic fields. One possible location is the site of a neutron star collision. When such massively dense objects collide, they release a tremendous amount of energy, some of it in the form of hard electromagnetic radiation and powerful magnetic fields: perfect conditions to create axions!

By modelling the energies involved, researchers can predict the masses of axions that will be produced. From there they can deduce the specific frequency of gamma ray photons that would be produced when they decay. If we can detect another such merger, and spot that specific spectrum of gamma radiation coming from the collision, that would confirm that axions are real, and provide evidence supporting a major theory about dark matter.

Natural particle accelerators One of the H.E.S.S. telescopes in Namabia. Credit: H.E.S.S.

An experiment like this would not be the first time scientists have tried to use natural events in place of a particle accelerator. Our own upper atmosphere is one such place where high energy particle collisions happen all the time. Unlike gamma radiation, cosmic rays are subatomic particles hurtling through space at relativistic speeds, and they from catastrophic events like supernova explosions. When they encounter our atmosphere, they smash into air molecules with greater violence than we are able to create in our largest particle accelerators. Telescopes like the High Energy Stereoscopic System (HESS) in Namibia are built to detect these collisions, high up in the sky. HESS is a pair of telescopes which focus on the upper atmosphere, looking for the characteristic bursts of cherenkov radiation that reveal the cascades of particles generated whenever a cosmic ray smashes into the atmosphere.

The observations from GW170817 have already been used by Dr Dev: careful analysis of the gamma rays observed by Fermi-LAT have already helped to narrow the constraints on the properties of axions and axion-like particles.

Observations like this, combined with the work of earth-bound experiments like ADMX, are critical to finding out whether axions exist. And although they haven’t found it yet, we still learn something each time an experiment fails to find anything. Each test is tuned for a specific mass, so those negative results all work together to narrow the range of possibilities. Hopefully it won’t be long before we have a definitive answer.

To learn more, visit https://source.wustl.edu/2024/03/finding-new-physics-in-debris-from-colliding-neutron-stars/

The post Colliding Neutron Stars are the Ultimate Particle Accelerators appeared first on Universe Today.

Categories: Science

This is Europa Clipper’s Version of the Golden Record

Tue, 03/12/2024 - 6:08pm

The Voyager spacecraft carried on board a plethora of scientific instruments but attached to the side was a golden record. The sounds of Earth were recorded upon it. Now, another mission is going to be carrying a message out into space. The Europa Clipper mission will launch in October and it will carry a plaque with images, illustrations and messages. There will be more than 2.6 million names and the word for ‘water’ converted into waveform from 103 languages. 

I think Captain James T Kirk would be proud of NASA for boldly going. This time with another message to the Cosmos on board the Europa Clipper. The destination is Jupiter’s moon Europa which has an icy crust and it is thought, a subsurface ocean. If the ocean exists, and all evidence seems to point to its presence, then there is likely twice as much water by volume than here on Earth. The plaque has been attached to commemorate the connection between the two worlds. 

The triangular shaped tantalum metal plaque measures about 18x28cm and has an engraving of a handwritten poem by Ada Limon “In Praise of Mystery: A Poem for Europa”. The 2.6 million names are engraved upon a silicon microchip that is in the centre of an illustration of a bottle among the Jovian system, NASA’s message in a bottle. 

In a statement, Lori Glaze, director of Planetary Science Division at NASA said “The plate combines the best humanity has to offer across the Universe – science, technology, education, art and math.” He went on to say “The message of connection through water, essential for all forms of life as we know it, perfectly illustrates Earth’s tie to this mysterious ocean world we are setting out to explore.”

One perhaps more controversial inclusion is the famous Drake Equation. Scientists have been divided about the validity and benefit of this equation which was developed by Frank Drake in 1961. Drake’s equation attempts to answer the question, using mathematics, of how many advanced civilisations there may be in our Galaxy. Aside from its varied levels of support, the equation has been etched onto the plate as well, on the inward facing side.

The probe is scheduled to launch later this year and, after a 2.6 billion km journey, will arrive at Europa in 2030. It will then begin making a total of 49 flyby’s of Europa to try and establish if the conditions could support life. To that end, it will have a host of instruments to explore the subsurface ocean, the crust, the atmosphere and the space environment around the moon. To ensure the instruments don’t fail in the high levels of radiation from Jupiter, they are housed in a metal container with one of the openings sealed by the plaque. 

This view of Jupiter’s icy moon Europa was captured by the JunoCam imager aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing: Kevin M. Gill CC BY 3.0

The illustrations don’t just advertise what we are like, they also depict how we communicate. References are made to radio frequencies that we could use for interstellar communication just in case an alien civilisation intercepts the probe some time in the future. It reveals how we use radio bands to listen out for alien signals and includes the frequencies emitted by water. 

If all of that wasn’t enough, in a lovely touch and a nod to one of the founders of planetary science and advocate for the mission, there is a portrait of Ron Greeley too. It was he who laid the very building blocks for the mission and it is a fitting gesture that he should be travelling to Jupiter with the craft he dreamed of.

Source : NASA Unveils Design for Message Heading to Jupiter’s Moon Europa

The post This is Europa Clipper’s Version of the Golden Record appeared first on Universe Today.

Categories: Science

Pages