Researchers have engineered yeast to efficiently convert methanol into D-lactic acid, a key compound for biodegradable plastics and pharmaceuticals. By optimizing gene and promoter combinations, they achieved the highest reported yield to date, offering a sustainable alternative to petroleum-based production. Their findings advance eco-friendly chemical manufacturing.
The Dark Energy Spectroscopic Instrument used millions of galaxies and quasars to build the largest 3D map of our universe to date. Combining their data with other experiments shows signs that the impact of dark energy may be weakening over time -- and the standard model of how the universe works may need an update.
A research team has achieved a new milestone in 3D X-ray imaging technology. The scientists have captured high-resolution CT scans of the interior of a large, dense object -- a gas turbine blade -- using a compact, laser-driven X-ray source. The work is part of a larger vision to leverage high-intensity lasers for a wide range of uses, from studying inertial fusion energy to generating bright beams of GeV electrons and MeV x-rays.
Somehow, we all know how a warp drive works. You're in your spaceship and you need to get to another star. So you press a button or flip a switch or pull a lever and your ship just goes fast. Like really fast. Faster than the speed of light. Fast enough that you can get to your next destination by the end of the next commercial break.
Welcome back to our five-part examination of Webb's Cycle 4 General Observations program. In the first and second installments, we examined how some of Webb's 8,500 hours of prime observing time this cycle will be dedicated to exoplanet characterization, the study of galaxies at "Cosmic Dawn," and the period known as "Cosmic Noon."
Today, we'll look at programs that will leverage Webb's unique abilities to study stellar populations and the interstellar medium in galaxies.
The surfaces of the Moon, Mercury, and Mars are easily visible and are littered with crater impacts. Earth has been subjected to the same bombardment, but geological activity and weathering have eliminated most of the craters. The ones that remain are mostly only faint outlines or remnants. However, researchers in Australia have succeeded in finding what they think is the oldest impact crater on Earth.
Researchers developed a hybrid AI approach that can generate realistic images with the same or better quality than state-of-the-art diffusion models, but that runs about nine times faster and uses fewer computational resources. The tool uses an autoregressive model to quickly capture the big picture and then a small diffusion model to refine the details of the image.
Researchers developed a hybrid AI approach that can generate realistic images with the same or better quality than state-of-the-art diffusion models, but that runs about nine times faster and uses fewer computational resources. The tool uses an autoregressive model to quickly capture the big picture and then a small diffusion model to refine the details of the image.
Researchers have combined theory and experiments to show that nuclear polarization does not limit studies of muonic atoms, clearing the way for new nuclear physics experiments.
Advances in the gene-editing technology known as CRISPR-Cas9 over the past 15 years have yielded important new insights into the roles that specific genes play in many diseases. But to date this technology -- which allows scientists to use a 'guide' RNA to modify DNA sequences and evaluate the effects -- is able to target, delete, replace, or modify only single gene sequences with a single guide RNA and has limited ability to assess multiple genetic changes simultaneously. Now, however, scientists have developed a series of sophisticated mouse models using CRISPR ('clustered regularly interspaced short palindromic repeats') technology that allows them to simultaneously assess genetic interactions on a host of immunological responses to multiple diseases, including cancer.
Advances in the gene-editing technology known as CRISPR-Cas9 over the past 15 years have yielded important new insights into the roles that specific genes play in many diseases. But to date this technology -- which allows scientists to use a 'guide' RNA to modify DNA sequences and evaluate the effects -- is able to target, delete, replace, or modify only single gene sequences with a single guide RNA and has limited ability to assess multiple genetic changes simultaneously. Now, however, scientists have developed a series of sophisticated mouse models using CRISPR ('clustered regularly interspaced short palindromic repeats') technology that allows them to simultaneously assess genetic interactions on a host of immunological responses to multiple diseases, including cancer.
Memristors consume extremely little power and behave similarly to brain cells. Researchers have now introduced novel memristive that offer significant advantages: they are more robust, function across a wider voltage range, and can operate in both analog and digital modes. Their unique properties could help address the problem of 'catastrophic forgetting,' where artificial neural networks abruptly forget previously learned information.
Scientists recently unveiled a first-of-its-kind authentication protocol for wireless, battery-free, ultraminiaturized implants that ensures these devices remain protected while still allowing emergency access.
Scientists recently unveiled a first-of-its-kind authentication protocol for wireless, battery-free, ultraminiaturized implants that ensures these devices remain protected while still allowing emergency access.
Astronomers have detected oxygen in the most distant known galaxy, JADES-GS-z14-0. This record-breaking detection is making astronomers rethink how quickly galaxies formed in the early Universe.
Engineers have developed an approach for recycling cement waste into a sustainable, low-carbon alternative that is comparable in performance to the industry standard.
Lithium-6 is essential for producing nuclear fusion fuel, but isolating it from the much more common isotope, lithium-7, usually requires liquid mercury, which is extremely toxic. Now, researchers have developed a mercury-free method to isolate lithium-6 that is as effective as the conventional method.
Lithium-6 is essential for producing nuclear fusion fuel, but isolating it from the much more common isotope, lithium-7, usually requires liquid mercury, which is extremely toxic. Now, researchers have developed a mercury-free method to isolate lithium-6 that is as effective as the conventional method.
The Extremely Large Telescope (ELT), currently under construction in northern Chile, will give us a better view of the Milky Way than any ground-based telescope before it. It's difficult to overstate how transformative it will be. The ELT's primary mirror array will have an effective diameter of 39 meters. It will gather more light than previous telescopes by an order of magnitude, and it will give us images 16 times sharper than the Hubble Space Telescope. It's scheduled to come online in 2028, and the results could start flooding in literally overnight, as a recent study shows.
One of the Holy Grails in cosmology is a look back at the earliest epochs of cosmic history. Unfortunately, the Universe's first few hundred thousand years are shrouded in an impenetrable fog. So far, nobody's been able to see past it to the Big Bang. As it turns out, astronomers are chipping away at that cosmic fog by using data from the Atacama Cosmology Telescope (ACT) in Chile.
Pages