It’s time to take a thorough, more serious look at using geoengineering to protect the planet’s icesheets, according to a group of scientists who have released a new report examining the issue. Glacial geoengineering is an emerging field of study that holds some hope for Earth’s diminishing glaciers and ice sheets.
Collectively, glaciers and icesheets are called the cryosphere. The cryosphere plays an important role in the water cycle. They’re massive water reservoirs that release their water into rivers, lakes, and oceans when the temperature rises. They cover about 10% of the Earth’s land surface and provide agricultural water for about two billion people.
There’s a dire consequence to not protecting Earth’s glaciers and icesheets: global sea rise. The IPCC (International Panel on Climate Change) doesn’t pull punches when it comes to our planet’s melting ice sheets and glaciers. In their Special Report on the Ocean and Cryosphere in a Changing Climate, published in 2019, the IPCC said that global mean sea levels would probably rise between 0.95 feet (0.29m) and 3.61 feet (1.1m) by the end of the 21st century. Those estimates may actually be on the conservative side, but they still put vast numbers of people in small island states and coastal cities right in the crosshairs of the unfolding melting cryosphere disaster.
A team of five scientists has released a new white paper on glacial geoengineering, “Glacial Climate Intervention: A Research Vision.” In it, they argue that glaciological research should focus on ice-sheet preservation to slow down or prevent sea level rise. They write that we need to determine “if engineered interventions applied to critical icesheet regions may reduce sea-level rise.”
In their paper, they focus on icesheets rather than glaciers. The world’s glaciers are remote, each one is relatively small, and they’re spread around the world. They’re not realistic targets for geoengineering. Conversely, Antarctica and Greenland feature massive, continent-size icesheets that are accessible and are the main source of meltwater that is raising sea levels.
The authors don’t advocate for any particular geoengineering intervention. Instead, they present their vision of a vigorous effort to determine which interventions should or could be used.
“We need vigorous public debate of potential benefits and harms, informed by research that creates evidence regarding those concerns.”
From Glacial Climate Intervention: A Research Vision“Everyone who is a scientist hopes that we don’t have to do this research,” said Douglas MacAyeal, a professor of geophysical sciences with the University of Chicago who has studied glaciers for nearly 50 years and is a co-author on the white paper. “But we also know that if we don’t think about it, we could be missing an opportunity to help the world in the future.”
Every major ice sheet and glacier system in the world is undergoing critical changes. As their melting accelerates, they’ll contribute more and more water to the oceans. The global sea level has already risen by about 8 or 9 inches since the late 1800s, and the rise will only accelerate.
Most of the water will come from regions in the Antarctic and Arctic, basically Greenland and the Antarctic Ice Sheet, a continental ice sheet that covers almost the entirety of Antarctica. Could limiting the melt in these key regions help slow the global sea level rise? How could it be achieved, and what undesirable effects would the effort have on ecosystems? According to the authors of the report, it’s time to tackle these questions seriously and with a sustained effort.
In the last couple of decades, scientists have focused on two questions about the melting cryosphere. One asks what processes cause the loss of ice that contributes to global sea rise, and the other asks how climate change is driving or affecting these processes. For decades, glaciologists have been informally discussing what interventions might be possible to slow down the sea rise.
For the authors of this report, it’s time to take the next step and ask what can be done. “We cannot stop sea-level rise, but we may be able to slow it while humanity makes the necessary shift away from carbon-based energy systems,” they write.
Their white paper is organized around three questions:
The white paper is a research agenda aimed at answering these questions. It goes beyond geoengineering and also considers “social license and justice, governance, ethics, and the wisdom of any research into glacial climate intervention.”
There are two prominent approaches to limiting melt and global sea level rise (GSLR.) One involves intervening in the ocean’s heat transport mechanisms, and the other involves basal-hydrology interventions. Basal-hydrology refers to the conditions at the base of the ice. Another less prominent approach involves intervening by pumping seawater.
The issue is extremely complex. In Antarctica, for example, different ice sheets respond differently to warmer temperatures. They have different structures and contact the ocean in different ways. Some are relatively protected from the melt, while others are in far more peril. No single type of intervention will succeed.
The Larsen ice shelf is situated on the east coast of the Antarctic Peninsula. It’s been breaking up since the 1990s. Could geoengineering slow or stop Antarctic ice shelves from fracturing and melting faster? Image: By A. J. Cook and D. G. Vaughan, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=30463195In some cases, geoengineering would have to prevent warm water from reaching the underside of ice shelves. This could be done by constructing sediment berms on the ocean bottom or placing fibrous curtains there. Colder water could be directed toward the underside of the shelves instead, limiting and delaying the melting. This could also thicken and lengthen the ice shelves. This is an example of ocean heat transport interventions. “This would stabilize the ice sheet and slow the rate of collapse,” the authors explain. Modelling studies show that modest curtains covering only a fraction of the water column could have an outsized effect on melting.
The obvious question is, what happens to the ecosystem? It would be a tough sell if the environmental destruction was severe.
Basal hydrology interventions are aimed at the base of ice sheets where they contact the ground. Ice streams are fast-flowing streams that discharge ice and sediment into the ocean from under an ice sheet and contribute to GSLR. In the past, some of them have stopped on their own. The Kamb Ice Stream suddenly shut down about 200 years ago from natural causes. Could we recreate those causes with geoengineering? “Better understanding of why the Kamb Ice Stream shut down of its own accord will tell us whether there are human interventions that could make it happen again,” the authors write.
The authors point out that the Kamb Ice Stream likely slowed down because it lost water content. Water acts as a lubricant that allows the streams to flow faster, increasing the melt.
One idea is to drill a field of holes through ice sheets and extract water from the basal region. That would reduce the lubrication effect and slow down the ice streams. “These holes would be used to extract either water or heat from the subglacial system, possibly using passive, unpowered thermosyphons,” the authors explain. Another similar method would involve creating channels under the ice sheet where water could drain away.
One advantage to these types of basal hydrology interventions is that there could be less ecological impact.
There are a handful of other potential interventions that haven’t been as well studied. For example, windbreaks could be employed on the surface to help snow build up on the top of ice sheets. We could place reflective materials on the surface of ice sheets to reduce ablation. Another one is to use cables and anchors to prevent ice sheets from breaking up. Yet another one is to pump seawater onto the surface of ice sheets during winter to create more ice.
The eastern coast of Antarctica has lost most of the Glenzer and Conger ice shelves, as seen in these satellite images taken between November 15, 1989 – January 9, 2022. Credit: NASA GSFC/UMBC JCET.“It will take 15 to 30 years for us to understand enough to recommend or rule out any of these interventions,” said co-author John Moore, a professor with the Arctic Center at the University of Lapland.
There are many uncertainties. Altering the flow of water with berms or curtains could have unintended consequences elsewhere that might work against our geoengineering efforts. Basal hydrology interventions could cause the grounding line, the place where subsurface ice meets rock, to retreat. Pumping seawater onto the top of an ice sheet could create or exacerbate existing fractures, hastening the sheet’s breakup.
The authors acknowledge how uncertain this all is. “All glacial climate interventions are scientifically new and not yet proven to work, and are technically and socially complex projects with multiple uncertain impacts,” they write. It’ll take a coordinated and committed effort to remove these uncertainties.
“Our argument is that we should start funding this research now so that we aren’t making panicked decisions down the road when the water is already lapping at our ankles.”
Douglas MacAyeal, Professor of Geophysical Sciences, University of ChicagoThere are arguments against the effort, of course.
This type of research could end up disincentivizing other research into reducing GHG emissions. But for the authors, reducing emissions is always the top priority. “We can never say often enough that that is the first priority,” said Moore.
Some say it might create an overreliance on technological solutions. Others argue that there might be too many unintended and adverse reactions.
There might be a moral hazard, too, with the actions of one generation imperilling the next. That’s already happening with GHG emissions. Another argument against geoengineering points out that it will be the developed nations that undertake it, and they may optimize the effort for their own desired outcomes, ones that benefit them unevenly. An additional argument is that the population of scientists is small and that if they’re the only ones discussing this, valuable perspectives might be missed.
In the end, the authors are calling for a vigorous debate on all aspects of the issue, not just the engineering methods themselves. “We need vigorous public debate of potential benefits and harms, informed by research that creates evidence regarding those concerns,” they write. “We need to know and discuss how such interventions will affect people across the globe, natural systems, perceptions of “nature,” and pressure to reduce anthropogenic climate change.”
In August 2021, it rained on the summit of Greenland for the first time in human history. Image Credit: Contains modified Copernicus Sentinel data (2021) and GEUS weather station data processed by ESA. ESA Standard LicenceThey say that the overall effort is to engage as many stakeholders as possible in discussion and research.
Our carbon emissions are still climbing. The rate isn’t the same across countries and economies because more developed economies have more resources to combat emissions. But ultimately, that doesn’t really matter. The problem is global, and the solution will be, too.
It’s possible that the world’s glaciers and ice sheets have a tipping point. We may have already reached it. “Humans have already released so much carbon dioxide that we are seeing profound changes in every glacier system around the world,” said MacAyeal. “Many of these are likely to have a tipping point where even if we were to stop emitting all carbon worldwide tomorrow, the system would still collapse. And we are not in a position now to say that we haven’t already crossed those points.”
The detailed approach that the authors recommend will take time to develop. If we implement these types of solutions, it will take time to see any benefits. As that time passes, ice sheets will continue to melt, and the seas will continue to rise. There’s a sense of panic, but that can’t drive our decisions. “Without research, we cannot know if there are viable interventions,” the authors write. Without research we also can’t know if there are tipping points.
This is another familiar refrain from scientists, one in a long line of refrains that were unheeded at first and pushed aside in the face of more pressing, short-term concerns. We’ve wasted time and have to stop wasting more. “Without the concurrent practical planning, engineering, and consultation, there will be an unconscionable delay in action, should there be a solution,” the authors explain.
They envision a large-scale expansion of the science and engineering behind glaciers and the measures we can take to slow their melt.
“We are proposing such an ambitious program because we see examining options for reducing sea-level rise from icesheet melting as a global imperative,” they write.
“Our argument is that we should start funding this research now so that we aren’t making panicked decisions down the road when the water is already lapping at our ankles,” said MacAyeal.
The post Can Geoengineering Protect Earth’s Icesheets? appeared first on Universe Today.
As I’m doing a lot of preparation for my trip to South Africa, I have neither the time nor the will to dissect the article below, a piece that appeared in The Journal of Chemical Education. As is so often the case with these articles that try to use science education to create what they call “Social Justice”, it’s poorly written, illustrated with childish and uninformative figures, and—worse—so poorly argued that I can’t even see its main point. It has something to do with teaching chemistry in a more “inclusive” way, but gives no serious methodology for doing so beyond talking about social justice in chemistry class. In the end, it’s simply a performative act that says, “Hey, there’s real structural racism in chemistry, and we two chemists are on the side of the minoritized. ” Click below to read, or download the pdf here.
Below there’s also a critique of this article by Jordan Beck; a critique published in Heterodox STEM.
Just a few excepts from the article above to give a sense of its inanity, and AI-style boilerplate:
Sexism, racism, queerphobia, and ableism (among many other forms of discrimination) continue to permeate society and culture. Existing as a multiply marginalized individual exacerbates these inequities. Intersectionality as a concept was described in the academic literature by Crenshaw in 1989, explaining how individuals could experience specific, compounded discrimination, not simply additive.
These societal inequities are reflected and reproduced in chemistry. Stereotypes about who can and cannot succeed in chemistry persist, in combination with inequality of participation and research funding success statistics, leading to homogeneity in groups communicating and conducting scientific research. Important work has highlighted the contributions of racially minoritized chemists in curricula, which is a key aspect of teaching chemistry both in schools and in postcompulsory education. Chemistry-specific inequities also include privileging only certain, narrow forms of “expert” scientific knowledge, e.g., prioritizing academic language which advantages the dominant cultural groups of chemistry students, graduates, and academics–an “untranslatable code” for those outside. This leads to individuals who do not see themselves as “properly” scientific or think that genuine fears of chemistry and/or chemicals will be dismissed, developing chemophobic attitudes. Therefore, when trying to challenge chemophobia, we have to consider these structural factors to avoid reinforcing existing views of being excluded, patronized, or dismissed. This social justice lens builds on previous models of chemophobia to explicitly identify these structures, highlighting additional challenges faced by marginalized groupThese sense of this, insofar as it has any sense, is that the emphasis on merit in chemistry, and the use of language that conveys chemical concepts, is bigoted and creates “chemophobia.”
There’s more:
However, very little literature on chemophobia specifically considers structural factors, e.g., systemic racism, sexism, or unequal access to education, and where research identifies that certain marginalized subgroups in a population are more likely to endorse chemophobic attitudes, this is rarely interrogated or explained.
Maybe there isn’t that much literature on systemic racism in chemistry because there’s not that much systemic racism (i.e. formally codified discrimination) in chemistry.
And here’s how to fix chemophobia (there’s a long list given as well, but you can read it for yourself). The upshot: we need more DEI!
However, a small but growing number of papers integrate social justice considerations, including Goeden and colleagues, who describe a community-based inquiry that improved critical thinking in allied health biochemistry. Livezey and Gerdon both describe teaching practices that integrate DEI (Diversity, Equity, and Inclusion) practices and explicitly link chemistry with social justice; these authors found that the social justice focus of the teaching promoted student engagement from those who were already involved in STEMM courses and those who, in their own words, “honestly did not like science”, and improved learners’ understanding of chemistry and wider scientific issues through course content that was relevant to their experiences and interests.
Again, the authors are using chemistry to advance their notion of social justice, which includes effacing the dubious “systemic racism” of the field. I think it would be better just to bring more minorities into chemistry by widening the net, furthering equal opportunity, and teaching chemistry—real chemistry—in an interesting way.
Like me, Jordan Beck is weary of papers like this. Click to read, and I’ll give one excerpt below. There is no branch of science immune from this kind of performative virtue signaling:
From Beck:
Thus, I really struggle when articles like this chemophobia paper come through because when these topics come up, journals seem to lose any pretense of rigor and relevance—anything goes under the DEI flag. Such papers also promote ideas that I consider to be detrimental to the science. The chemophobia article is only a commentary, but it still bothers me.
The remainder of this post consists of select passages from the commentary with my commentary in response. All quotes are from the commentary.
The Palmer and Sarju paper starts with a figure that I’ve put below along with Beck’s analysis.
The figure, which constitutes an insult to the intelligence of not just academics, but anyone. It adds nothing beyond what’s said in the paper’s text:
Beck’s take:
It is difficult to summarize exactly what the figure is meant to convey, but it seems like the idea is that we need some sort of rainbow lens to disrupt the uniformity of the people in the sciences. It is better, in this view, to label each scientist with a particular label so that we can understand how “differential access to education” is leading to “cognitive overload”. I maintain the notion, which for one reason or another now seems to be outdated or taboo, that I really don’t care about the sexual orientation of the authors of a journal article that I am reading. In fact, if you can believe it, I didn’t even think about trying to determine the gender or sexual orientation of the authors of the article that I just reviewed. The top picture, where all the scientists are the same, has some merit. They can be judged simply by what they contribute.
Frankly, I’m losing my willingness to take apart papers like this because they’re all the same. I can suggest only two things to the authors. First, if you want more diversity in chemistry, work on giving children more opportunity to encounter chemistry, not DEI-ize the way chemistry is taught. Second, learn to write, as your prose is turgid and, surprisingly, laden with jargon that obscures the meaning of your text.