We know that planets form in protoplanetary disks, swirling collections of gas and dust that rotate around very young stars. But we don't know all the details, partly because it's difficult to see inside these disks and watch the process unfold. One question astronomers want an answer to concerns ultraviolet radiation. Does extreme ultraviolet radiation disrupt the planet-forming process?
Co-paired stars, or stars that travel together, can provide insights into processes that other stars can't. Differences in their brightness, orbits, and chemical composition can hint at different features, and scientists are beginning to exploit them. A new paper from researchers in Australia, China, the US, and Europe analyzed data to determine if one of those features - specifically the depletion of particular elements in a star - could be a sign that it has formed a planet, or if it ate one.
Some 13,000 years ago, the Sun emitted a huge belch of radiation that bombarded Earth and left its imprint in ancient tree rings. That solar storm was the most powerful one ever recorded. The next strongest was the 1839 Carrington Event. It was spurred by a huge solar flare that triggered a powerful geomagnetic storm at Earth. The resulting "space weather" disrupted telegraph communications around the world. Today, as we move through this year's "solar maximum", a period of solar activity that occurs every 11 years, scientists want to prepare governments for the effects of severe solar storms.
The JWST has done it again. The powerful space telescope has already revealed the presence of bright galaxies only several hundred million years after the Big Bang. Now, it's sensed light from a galaxy only 280 million years after the Big Bang, the most distant galaxy ever detected.