New Horizons' primary mission is complete. It's already completed its pass through the Pluto system and even stopped by 486958 Arrokoth, a Kuiper belt object on its way out of the solar system. But that doesn't mean it's done providing new scientific insights. A new paper looks at data collected by its ultraviolet spectrograph, which looked at one particular wavelength and helped provide context to a few different questions about the solar system.
You're going to get to enjoy some new guest hosts for a month or two on Skeptoid.
Learn about your ad choices: dovetail.prx.org/ad-choicesHow do you distinguish a galaxy from a mere cluster of stars? That's easy, right? A galaxy is a large collection of millions or billion of stars, while a star cluster only has a thousand or so. Well, that kind of thinking won't get you a Ph.D. in astronomy! Seriously, though, the line between galaxy and star cluster isn't always clear. Case in point, UMa3/U1.
The idea that our Solar System is representative of other solar systems hasn't survived the age of exoplanet discovery. Kepler and TESS have shown us that our system doesn't even contain the most common type of planet: sub-Neptunes. These planets pose a mystery to planetary scientists, and the JWST is helping unravel the mystery.
The solar gravitation lens (SGL) has much potential as a telescope. This point in space, located about 650 AU away from the Sun, uses fundamental properties of physics to amplify the light from extremely far-away objects, allowing us to see them at a level of detail unachievable anywhere else. However, any SGL mission would face plenty of technical and physical challenges. A new paper by independent researcher Viktor Toth is the latest in a series that discusses those challenges when imaging a far-away exoplanet, and in particular, looks at the difficulties in dealing with potential moving cloud cover. He concludes that using the SGL might not be the most effective way of capturing high-resolution images of an exoplanet, after all.