You are here

News Feeds

ESA Sets the Launch Date for Ariane 6: July 9th

Universe Today Feed - Wed, 06/05/2024 - 6:46pm

The European Space Agency has retired its Ariane 5 rocket, and all eyes are on its next generation, Ariane 6. The rocket’s pieces have been arriving at the Kourou facility in French Guiana and are now assembled.  ESA has now announced they’ll attempt a test launch on July 9th and hope to complete a second flight before the end of 2024. This new heavy-life rocket has a re-ignitable upper stage, allowing it to launch multiple payloads into different orbits.

“Ariane 6 marks a new era of autonomous, versatile European space travel,” said ESA Director General Josef Aschbacher, who announced the launch data at the Innovation and Leadership in Aerospace (ILA) Berlin Air Show on June 5, 2024. “This powerful rocket is the culmination of many years of dedication and ingenuity from thousands across Europe and, as it launches, it will re-establish Europe’s independent access to space. … I would like to thank the teams on the ground for their tireless hard work, teamwork and dedication in this last stretch of the inaugural launch campaign. Ariane 6 is Europe’s rocket for the needs of today, adaptable to our future ambitions.”

An overview of Europe’s new rocket, Ariane 6. Credit: ESA.

Ariane 6 has been in the works since the early 2010s to be a replacement the workhorse Ariane 5, which is no longer in production. Ariane 5’s first successful launch was in 1998, and since then has sent 109 spacecraft on their way, including the first ATV Jules Verne to the International Space Station and the James Webb Space Telescope to the second LaGrange point 1.5 million km (1 million miles) from Earth.

Ariane 6 is an expendable launch vehicle – not reusable like SpaceX’s rockets — that comes in two versions, with a modular design that can be customized: the rocket can use either two or four P120C strap-on boosters, depending on mission requirements. With the various designs, it can put a 4,500 kg payload into a geostationary transfer orbit or 10,300kg into low Earth orbit using the two boosters, and with four side boosters, it can launch 11,500 kg into a geostationary transfer orbit and 20,600kg into low Earth orbit. The re-ignitable upper stage allows for multiple satellites to launch on a single flight.

The Ariane 6 rocket test firing on its launch pad at the European Spaceport in French Guiana. Credit: ESA

Ariane 6 was developed at a cost of just under 4 billion euros ($3.9 billion) and was originally planned for its first launch in July 2020. However, the project has been hampered by several delays, including work-related issues during the Covid-19 pandemic.

The rocket has undergone several tests in the past few years, and in November of 2023, a full fueled Ariane 6 was tested on the launchpad, firing its engines for several minutes, simulating a flight to space.

“The announcement of the scheduled date for Ariane 6’s first flight puts us on the home stretch of the launch campaign and we are fully engaged in completing the very last steps,” said Martin Sion, CEO of ArianeGroup, the prime contractor of the Arian 6. “This flight will mark the culmination of years of development and testing by the teams at ArianeGroup and its partners across Europe. It will pave the way for commercial operations and a significant ramp-up over the next two years. Ariane 6 is a powerful, versatile and scalable launcher that will ensure Europe’s autonomous access to space.”

Part of the first Ariane 6 rocket inside the Vehicle Assembly Building, Kourou, French Guiana earlier in 2024. Credit: ESA/CNES/Arianespace/Arianegroup.

At the Spaceport in French Guiana, various payloads have been integrated on Ariane 6’s payload carrier. One major milestone must be met before launch: a full wet dress rehearsal, which is having a fully fueled vehicle going through all the steps of a countdown, but not the actual ignition of the rocket engines. Once this activity has been completed, the Ariane 6 Task Force will provide an update, confirming the date for the inaugural flight.

The post ESA Sets the Launch Date for Ariane 6: July 9th appeared first on Universe Today.

Categories: Science

Metal is 3D Printed on the Space Station

Universe Today Feed - Wed, 06/05/2024 - 4:31pm

I have always wanted a 3D printer but never quite found a good enough reason to get one. Seeing that NASA are now 3D printing metal is even more tantalising than a plastic 3D printer. However, thinking about it, surely it is just a computer controlled soldering iron! I’m sure it’s far more advanced than that! Turns out that the first print really wasn’t much to right home about, just an s-curve deposited onto a metal plate! It does however prove and demonstrate the principle that a laser can liquify stainless steel and then deposit it precisely in a weightless environment. 

Arguably 3D printers have revolutionised manufacturing and prototyping industry.   The invention of them has been attributed to Chuck Hull who in 1983 but it’s more true to say he laid the foundations. Hull developed a technique known as stereolithography which involved creating 3D objects by curing thin layers of a photopolymer with UV light. The 3D printers that are commercially available came 5 years later in 1988.

NASA and ESA have been interested in 3D printing in space to make repair/improvement engineering far cheaper, sustainable and timely. Instead of waiting for parts to be shipped up to the ISS. To that end there has been a more conventional plastic 3D printer on board the ISS since 2014 because a 3D printed replacement is far simpler and more cost effective. Indeed ESA are trying to create a circular space economy to recycle materials already in orbit. It makes far more sense to repurpose existing materials in orbit – such as metal from old satellites – to make new tools or parts removing the need for rocket launches to transport them.

In November 2014, NASA astronaut Butch Wilmore installed a 3-D printer made by Made in Space in the Columbus laboratory’s Microgravity Science Glovebox on the International Space Station. Credit: NASA TV

The metal printer that is now on board the International Space Station employs stainless steel wire being fed onto the medium being printed upon. A high power laser which is a million times more powerful than a laser pointer then heats it up melting a small section. As the steel wire feeds into the melt pool it melts, adding to the metal, making it slightly raised. 

Unlike a 3D printer you may have (or I may be trying to justify) which you can control from your own computer, the printer on ISS is controlled entirely from the ground. The crew do have tasks however, they have to open a nitrogen and venting valve before the printing can start. I guess it’s almost the equivalent of putting the paper in your printer at home! 

The printer was developed by a team led by Airbus under the ESA Directorate of the Human and Robotic Exploration contract. It arrived on the ISS in January 2024 where the 180kg printer was installed in the ESA Columbus Module. 

The next step for the printer is to print four shapes that have been chosen for full-scale 3D printing. They will then be returned to Earth for analysis and comparison against reference prints already created in normal gravity. The teams hope to explore how microgravity impacts 3D printing. Two of the 3D printed parts will go to the Materials and Electrical Components Lab at ESTEC in Netherlands. The other two will go to the European Astronaut Centre at the Technical University of Denmark.

Source : First metal 3D printing on Space Station

The post Metal is 3D Printed on the Space Station appeared first on Universe Today.

Categories: Science

Does coming off antidepressants really cause withdrawal symptoms?

New Scientist Feed - Wed, 06/05/2024 - 4:30pm
People who stop taking antidepressants may get mental and physical symptoms as their bodies adjust to the lack of medicines - now we know how common this is
Categories: Science

Primordial Black Holes Can Only Explain a Fraction of Dark Matter

Universe Today Feed - Wed, 06/05/2024 - 4:04pm

What is Dark Matter? That question is prominent in discussions about the nature of the Universe. There are many proposed explanations for dark matter, both within the Standard Model and outside of it.

One proposed component of dark matter is primordial black holes, created in the early Universe without a collapsing star as a progenitor.

The dark matter problem is a missing mass problem. Galaxies should not hold themselves together according to their observable mass. Their observable mass is stars, gas, dust, and a sprinkling of planets.

Some other form of mass must be present to prevent galaxies from essentially dissipating. Dark matter is a placeholder name for whatever that missing mass may be. Astronomer Fritz Zwicky first used the term in 1933 when he observed the Coma Cluster and found indications of missing mass. About 90% of the Coma Cluster is missing mass, which Zwicky called “dunkle Materie.”

This Hubble Space Telescope mosaic shows a portion of the immense Coma galaxy cluster that contains more than 1,000 galaxies and is located 300 million light-years away. The rapid motion of its galaxies was the first clue that dark matter existed. Image Credit: NASA, ESA, J. Mack (STScI) and J. Madrid (Australian Telescope National Facility

Primordial black holes (PBHs) are one leading candidate for dark matter. In the Universe’s earliest times, pockets of dense subatomic matter may have formed naturally. Once dense enough, they could’ve collapsed directly into black holes. Unlike their astrophysical counterparts, they had no stellar progenitors.

Recent JWST observations and LIGO/Virgo results support the idea that PBHs are dark matter. Some researchers go further and say that this evidence supports the idea that dark matter is exclusively made of PBHs and has no other components.

New research suggests that some of the early PBHs would merge and that LIGO/Virgo can detect the gravitational waves from mergers. The research is “Constraints on primordial black holes from LIGO-Virgo-KAGRA O3 events.” The lead author is M. Andres-Carcasona, a PhD student at the Institute of High Energy Physics at the Barcelona Institute of Science and Technology.

An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse into a black hole. Credit: Aaron Smith/TACC/UT-Austin.

In 2015, LIGO (Laser Interferometer Gravitational-Wave Observatory) detected its first black hole merger. At the time, researchers heralded this new window into the Universe. Until then, astronomical observations were based on electromagnetic radiation, but LIGO/Virgo changed that.

Now, Japan has joined the LIGO/Virgo collaboration with their Karga gravitational wave observatory, and the international effort is named LIGO/Virgo/Karga (LVK.) Together, the three observatories gather data on gravitational waves.

“Previous works have explored the use of GW data to find direct or indirect evidence of PBHs,” the authors write. “Specifically targeted searches of subsolar mass compact objects, which would provide a smoking gun signal of the existence of PBHs have so far been unsuccessful.”

The authors point out that within our growing body of GW data, there may be indications of PBHs that were missed by other researchers’ methods. They write that some of the component masses “… fall in regions where astrophysical models do not predict them, potentially suggesting for a PBH population,” they write.

This ESA graphic shows how we might discover primordial black holes and help solve the dark matter mystery using the JWST and LISA, the Laser Interferometer Space Antenna. Unfortunately, LISA’s launch is at least a decade away. Image Credit: ESA

The mass function of PBHs plays a large role in the formation of PBHs. Their goal is to update the mass constraints on PBHs in GW data. “One of our aims is to derive constraints which do not depend significantly on the underlying formation scenario. Thus, we consider a variety of different PBH mass functions,” they explain.

The two underlying formation scenarios they mention are astrophysical and primordial. Within the primordial category, there are different ways that PBHs can form, and they’re all tangled up with mass function. The authors explain that PBHs could explain the totality of dark matter, but only if they’re within the range of 10-16 to 10-12 solar masses.

“Lighter PBHs would be evaporating today and can constitute only a small portion of the DM,” they write.

Astrophysical BHs form binaries and can merge, sending out gravitational waves. If PBHs merge, they would also send out gravitational waves. It’s possible that some of these mergers are behind some of the GW data detected by LIGO/Virgo/Karga in its third observational run. The researchers present their results in terms of a pessimistic case and an optimistic case. The pessimistic case says that all GW observations are from Astrophysical Black Hole (ABH) mergers, while the optimistic case suggests that some are from PBH mergers.

Their research and its results involve an awfully large number of complicated physical terms and relationships. But the main question is whether PBHs can comprise dark matter, either partly or wholly. In that context, what do the results boil down to?

This artist’s illustration shows small black holes in the accretion disk of a supermassive black hole. In early 2024, a team of researchers found evidence of a small black hole inside the accretion disk of a supermassive black hole. The small BH, if it exists, is between 100 to 10,000 solar masses. At the bottom of that range, it’s the same mass as a PBH. It’s not thought to be primordial, but it indicates how much we’ve yet to learn about black holes. Credit: Caltech/R. Hurt (IPAC)

The researchers say that in their analysis of a population of both astrophysical and primordial binaries, PBHs cannot entirely comprise dark matter. At most, they can make up a small portion of it.

“… in a population of binaries consisting of primordial and astrophysical black holes, we find that, in every scenario, the PBHs can make up at most fPBH less than or equal to 10-3 of dark matter in the mass range 1-200 solar masses.”

fPBH represents the fraction of dark matter that PBHs can comprise, 10-3 means 0.001, and the solar mass range is self-explanatory. It doesn’t take a physicist to understand what they’re saying. PBHs can make up only a tiny fraction of dark matter in their analysis.

This may not be a headline-generating study. It’s a look under the hood of astrophysics and cosmology, where teams of researchers work hard to incrementally constrain and define different phenomena. But that doesn’t undermine its significance.

One day, there might be a headline that screams, “Physicists Identify Dark Matter! Universe’s Big Questions Answered!”

If that ever happens, hundreds and thousands of studies like this one will be behind it.

The post Primordial Black Holes Can Only Explain a Fraction of Dark Matter appeared first on Universe Today.

Categories: Science

Research Work Begins on the Habitable Worlds Observatory

Universe Today Feed - Wed, 06/05/2024 - 3:07pm

NASA are planning on building a telescope to hunt for habitable worlds. The imaginatively named ‘Habitable Worlds Observatory’ is at least a decade away but NASA have started to develop the underlying technology needed. The contracts have been awarded to three companies to research the next-generation optics, mission designs and telescope features at a cost of $17.5 million. Work should begin late summer 2024.

The Habitable Worlds Observatory (HWO) is a mission to launch a large space telescope with the main purpose of directly imaging Earth-like planets around stars like our Sun. It will also be able to study their atmosphere to look for chemical signatures for signs of life. The mission is very much in its early planning stages with working groups looking at the  science goals and how to achieve them. 

This is an artist’s illustration of the exoplanet TRAPPIST-1d, a potentially habitable exoplanet about 40 light-years away. Image Credit: By NASA/JPL-Caltech – Cropped from: PIA22093: TRAPPIST-1 Planet Lineup – Updated Feb. 2018, Public Domain, https://commons.wikimedia.org/w/index.php?curid=76364484

It is thought that, based on existing exoplanet research, one star in every five is likely to have an Earth-like planet in orbit around it. Of course the whole premise of searching for live in the Universe relies on that life being somewhat similar to our own. There may well be life based on a whole different chemistry but if we are to find life then we may as well look for life like ours rather thank take a punt on something completely different. To that end HWO will be on the lookout for chemicals like Oxygen and methane and other signatures that hint at the presence of life. 

In January of this year, NASA requested proposals that will drive and advance the necessary technologies that will be needed for HWO. This may sound a simple ask but taking into consideration what will be needed such as a coronagraph thousands of times more capable than existing to block out light from the host star and an optical system that can remain stationary to the accuracy of the width of an atom during an observation and you realise the challenges ahead. 

Following on from the first phase, NASA has now selected three proposals for two-year fixed price contracts that total a staggering $17.5 million. Sounds like a lot of money but Hubble cost $16 billion to develop and launch. The work is schedule to begin by late summer 2024. Together the contracts will deliver a framework of technology that will support the next phase of the HWO development and include;

  • Modelling and sub-systems for an  ultra-stable’ optical system far beyond current capability. This will be delivered by BAE Systems.
  • Develop necessary integrated modelling infrastructure that can navigate and compare design interdependencies. This element will be delivered by Lockheed Martin
  • Advance the technologies need to support telescope operations such as deployable optical baffles to reduce stray light ingress and structural support for the optical train.  This final element will be delivered by Northrop Grumman.
Artist impression of the James Webb Space Telescope

NASA will of course be in control the whole way through and the output will enable them to plan for the development and build phase of the mission. The work is not being completed in isolation though as there are learnings from the James Webb Space Telescope and the future Nancy Grace Telescope too. 

Source : NASA Awards Advance Technologies for Future Habitable Worlds Mission

The post Research Work Begins on the Habitable Worlds Observatory appeared first on Universe Today.

Categories: Science

The squirrel with the golden tail

Why Evolution is True Feed - Wed, 06/05/2024 - 1:38pm

I know:  the title sounds like a James Bond movie. . .

Over the last few years, the squirrels around Botany Pond have seemed to acquire a gene form that gives them golden tails. Now I don’t know if it’s a gene, but I don’t see how anything else can produce several squirrels with golden tails. (Not all of them have it.)

For your delectation, here are two shots of one I took on my way home. Since I always carry a stash of nuts in my bag for squirrels, this one got a pecan, and was delighted to have it.

If you’ve seen squirrels like this, or know how they develop this way, let me know.

Categories: Science

Oral insulin drops offer relief for diabetes patients

Matter and energy from Science Daily Feed - Wed, 06/05/2024 - 1:27pm
Diabetes rates continue to rise. Scientists have now created a pain-free drug delivery method to help people with diabetes manage the disease and maintain their health more easily. Researchers have developed oral insulin drops that when placed under the tongue are quickly and efficiently absorbed by the body, potentially replacing the need for insulin injections.
Categories: Science

US public opinion on social media is warming to nuclear energy, but concerns remain

Matter and energy from Science Daily Feed - Wed, 06/05/2024 - 1:27pm
The U.S. public displays more positive than negative sentiment toward nuclear energy but concerns remain about waste, cost and safety, according to an analysis of 300,000 posts on social media.
Categories: Science

Flapping frequency of birds, insects, bats and whales described by universal equation

Computers and Math from Science Daily Feed - Wed, 06/05/2024 - 1:27pm
A single universal equation can closely approximate the frequency of wingbeats and fin strokes made by birds, insects, bats and whales, despite their different body sizes and wing shapes, researchers report in a new study.
Categories: Science

AIs are irrational, but not in the same way that humans are

Computers and Math from Science Daily Feed - Wed, 06/05/2024 - 1:26pm
Large Language Models behind popular generative AI platforms like ChatGPT gave different answers when asked to respond to the same reasoning test and didn't improve when given additional context, finds a new study.
Categories: Science

Olivine unlocks the secrets of the Moon's interior

Space and time from Science Daily Feed - Wed, 06/05/2024 - 1:26pm
New partitioning coefficients of first-transition row elements, Ga and Ge between olivine and silicate melt have been reported. New high-temperature experiments have investigated the effects of oxygen fugacity and iron content on these partition coefficients. This newly compiled dataset offers insights into interpreting trace elements found in olivine phenocrysts within lunar basalts, shedding light on the deep interior composition of the Moon.
Categories: Science

Fighting fires from space in record time: How AI could prevent devastating wildfires

Computers and Math from Science Daily Feed - Wed, 06/05/2024 - 1:26pm
Scientists are getting closer to detecting bushfires in record time, thanks to cube satellites with onboard AI now able to detect fires from space 500 times faster than traditional on-ground processing of imagery.
Categories: Science

Novel method of detecting high-frequency gravitational waves in planetary magnetospheres

Space and time from Science Daily Feed - Wed, 06/05/2024 - 1:26pm
A groundbreaking method of detecting high-frequency gravitational waves (HFGWs) has been proposed. The team's innovative approach may enable the successful detection of HFGWs by utilizing existing and technologically feasible astronomical telescopes in planetary magnetosphere, opening up new possibilities for studying the early universe and violent cosmic events in an effective and technically viable way.
Categories: Science

Scientists detect slowest-spinning radio emitting neutron star ever recorded

Space and time from Science Daily Feed - Wed, 06/05/2024 - 1:25pm
Scientists have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate -- slower than any of the more than 3,000 radio emitting neutron stars measured to date.
Categories: Science

Uptake of tire wear additives by vegetables grown for human consumption

Matter and energy from Science Daily Feed - Wed, 06/05/2024 - 1:25pm
Car tires contain hundreds of chemical additives that can leach out of them. This is how they end up in crops and subsequently in the food chain. Researchers have now detected these chemical residues in leafy vegetables for the first time. Although the concentrations were low, the evidence was clear, a finding that is also known for drug residues in plant-based foods.
Categories: Science

Babies use 'helpless' infant period to learn powerful foundation models, just like ChatGPT

Computers and Math from Science Daily Feed - Wed, 06/05/2024 - 1:25pm
Babies' brains are not as immature as previously thought, rather they are using the period of postnatal 'helplessness' to learn powerful foundation models similar to those underpinning generative Artificial Intelligence, according to a new study.
Categories: Science

A cracking discovery -- eggshell waste can recover rare earth elements needed for green energy

Computers and Math from Science Daily Feed - Wed, 06/05/2024 - 1:25pm
A collaborative team of researchers has made a cracking discovery with the potential to make a significant impact in the sustainable recovery of rare earth elements (REEs), which are in increasing demand for use in green energy technologies. The team found that humble eggshell waste could recover REES from water, offering a new, environmentally friendly method for their extraction.
Categories: Science

A cracking discovery -- eggshell waste can recover rare earth elements needed for green energy

Matter and energy from Science Daily Feed - Wed, 06/05/2024 - 1:25pm
A collaborative team of researchers has made a cracking discovery with the potential to make a significant impact in the sustainable recovery of rare earth elements (REEs), which are in increasing demand for use in green energy technologies. The team found that humble eggshell waste could recover REES from water, offering a new, environmentally friendly method for their extraction.
Categories: Science

Top IT industry managers are divided on the need for face-to-face communication in the workplace

Computers and Math from Science Daily Feed - Wed, 06/05/2024 - 1:25pm
Many managers are currently seeking a balance between digital and face-to-face communication. A recent study shows that top IT industry managers have different views on when and for what purposes face-to-face communication in the workplace is needed.
Categories: Science

New method of DNA testing: Expanding scientific innovation

Matter and energy from Science Daily Feed - Wed, 06/05/2024 - 1:24pm
A team of researchers has developed a new method for target DNA sequence amplification, testing and analysis.
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator