I am a lifelong dog owner, and like many dog owners am often impressed with how smart my dogs have been. They pick up on subtle body language and non-verbal cues, they seem to understand specific words, and they are capable of successfully communicating their wants and desires. My latest dog is an Australian shepherd, who is both smart and willful. Any attempt at training him to do what we want results in him equally training us to do what he wants. An of course we love them and the emotional connection is real and bidirectional. Dogs and humans have evolved a symbiotic relationship.
Still, I was very skeptical when I heard about a recent social media phenomenon – posting videos of dogs using a soundboard to communicate. After watching the videos I am completely unimpressed, and my skepticism has been supported. It turns out that this is mostly just the old “Clever Hans” effect, falling into the same trap that all attempts to teach animals to communicate have risked.
In the early 20th century, Wilhelm von Osten, who was a mystic and phrenologist (among other things) showcased his horse, Hans, who he claimed could not only do arithmetic, but could read, solve problems, track a calendar, and other tasks. Hans would communicate by tapping his hoof the correct number of times. Osten probably really believed in Hans’s abilities, and he showcased them far and wide. However, when psychologist Oskar Pfungst investigated Hans he found that the horse was simply responding to non-verbal cues from his owner, essentially noted when to stop on the correct answer. He initially removed the trainer from the area, but Hans was still able to perform. However, he then made sure that no one present knew the answer, and then Hans could not perform. Hans needed cues from people to know when to stop.
Perhaps a more complex example is Koko the gorilla, who his trainer claimed could use 1,000 signs and understand 2,000 spoken words. The evidence presented to backup these claims is mainly in the form of videos. But if you watch these videos you notice that Koko’s communication is very hit or miss, and requires a lot of clever interpretation on the part of the trainer. So much so that it is possible to conclude that most if not all of the communication is happening in the mind of the trainer.
Since Koko is not making full coherent sentences, just stringing together 1-3 words, a lot is left up to interpretation. Is Koko really combining words logically to convey new meaning, or just signing until they get what they want. It does seem that Koko has associated some signs with physical objects or with actions. But is this association really language? Sometimes Koko makes mistakes, and has to keep going until the trainer gives them positive feedback. Sometimes they are “kidding” when they get things wrong, and sometimes you have to infer what they might mean.
There is no questions gorillas are very smart animals, and have an ability to learn a lot of information. But the evidence simply did not convince the scientific world that they possess that level of human-like language. Koko turned into a cautionary tale that has hung over animal language research ever since. Again – I am not saying that animals have no language. They clearly do. Dogs and primates in particular have been shown to understand words spoken by humans, not just intonation and body language. The real question is – can they use words to communicate, and can they string words together logically? So far, the scientific community is not convinced.
Let’s get back to the dog videos – what I see in them is a clear Clever Hans / Koko phenomenon. Copper in particular is unimpressive. When asked a question he puts his paw out and hits whatever button is right in front of him, without even looking at the buttons (shades of facilitated communication). Also, there is a very limited set of buttons, and everything relates to doggy interests. So the dog could hit literally any button and the owner could make sense of it. In the “Bunny” video the dog hits the button for “home” several times and the owner says – “Yes, we are home.” What’s that button even there for? When at home, the owner concludes the dog is telling them they are home, and if not at home I presume they would conclude the dog wants to go home. It doesn’t seem like there is any possible wrong answer.
This is a pretty clear example of wishful thinking, and the videos are certainly not compelling evidence that actual communication is going on. At most these dogs are learning to associate certain actions with getting a reward of some kind. There is also likely a selection bias going on in terms of which videos segments are uploaded to social media – it’s reasonable to conclude we are seeing the best evidence there is.
This all may seem harmless and fun, but the underlying phenomenon can get very serious and have profound consequences. Similar methods are used to communicate with non-verbal people, and suffer all of the problems of animal language research. It is very easy for the communicator or facilitator to impose their own mental processes onto their client. Far from giving a voice to a non-verbal person, they are stealing their voice (even if they mean well). Sometimes this can also lead to very dark places, such as using such methods to make serious accusations against others.
I suspect this is a lesson we will have to learn over and over again. More than a century after Clever Hans and the true phenomenon underlying his performance was revealed, it’s happening all over again.
The post Dog Soundboards first appeared on NeuroLogica Blog.
Meanwhile, in Dobrzyn, Hili is still queen of the hill:
A: What are you doing?
Hili: Some call it deterrence.
Ja: Co ty robisz?
Hili: Niektórzy nazywają to odstraszaniem.
Warp drives have a long history of not existing, despite their ubiquitous presence in science fiction. Writer John Campbell first introduced the idea in a science fiction novel called Islands of Space. These days, thanks to Star Trek in particular, the term is very familiar. It’s almost a generic reference for superliminal travel through hyperspace. Whether or not warp drive will ever exist is a physics problem that researchers are still trying to solve, but for now, it’s theoretical.
Recently, two researchers looked at what would happen if a ship with warp drive tried to get into a black hole. The result is an interesting thought experiment. It might not lead to starship-sized warp drives but might allow scientists to create smaller versions someday.
NASA’s Eagleworks attempted to test Alcubierre warp drive concept. Credit: 2012Remo Garattini and Kirill Zatrimaylov theorized that such a drive could survive inside a so-called Schwarzschild black hole. That’s provided the ship crosses the event horizon at a speed lower than that of light. Theoretically, the black hole’s gravitational field would decrease the amount of negative energy required to keep the drive going. If it did, the ship could pass through and somehow use it to get somewhere else without getting crushed. Furthermore, the mathematics behind this idea points the way toward the possible creation of mini-warp drives in lab settings.
What’s a Warp Drive?Could scientists build a micro- or mini-warp drive in the lab? Good questions. To understand the team’s work, let’s look at the major players in this research: warp drives and black holes.
The idea is inspired by the fact that nothing can go faster than light speed. Given the distances in space, traveling to the nearest star would take years (if we could go at light speed). Going across a galaxy or to more distant galaxies would take years and many lifetimes. So, if you want to be a space-faring species, you must travel faster than light (FTL).
How would you do that? This is where warp drives come in. Theoretically, they allow you to put your spaceship inside a bubble that could slip through space at FTL speeds. That’s how the starships in Star Trek (and other SF stories) get across huge distances so quickly. The Star Trek ships use an energy source in a “warp core” to power warp field generators. They create the warp bubble in subspace. The ship uses that to go wherever the crew needs to be.
Do Physicists Like Warp Drive?Such a warp drive is a tantalizing idea with many caveats. For example, generating a warp field requires an insane amount of energy. Some physicists suggest that it would take more energy than we’re capable of generating. Creating that energy would require huge amounts of exotic matter—something like “unobtanium”. So, that’s a problem right there.
Others say that creating such a drive goes against our current understanding of spacetime physics. However, that hasn’t stopped anybody from speculating on ways to make it happen. For example, Mexican physicist Miguel Alcubierre had an idea for such a drive in 1994. He suggested that it could create a bubble that would shift space around an object. He has continued his research about a ship that could get somewhere faster than light. However, he and others still point out various problems with both creating and sustaining a warp drive. That includes the idea that such a drive effectively isolates itself from the rest of the Universe. Among other things, it means the ship can’t control the drive that’s making it go. So, there are a still few bugs to work out.
This artist’s illustration shows a spacecraft using an Alcubierre Warp Drive to warp space and ‘travel’ faster than light. Image Credit: NASA About Black HolesWe are most familiar with black holes in terms of stellar mass and supermassive ones. These also sport accretion disks that convey material into the black hole. For example, the central supermassive black hole named Sagittarius A* in our own Milky Way Galaxy periodically gobbles down material. Then, it emits a belch of radiation. Other, more active galaxies send out jets of material emitted as the central supermassive black hole feeds continuously.
Simulation of a black hole. (Credit: NASA/ESA/Gaia/DPAC)A black hole is a concentration of mass with gravity so strong that nothing, even light, can escape. In their study about black holes and warp drives, the authors used Schwarzschild black holes. These so-called simple “static” black holes curve spacetime, have no electric charge and are non-rotating. Essentially, they are good approximations for mathematical explorations of the characteristics of slowly rotating objects in space.
When A Ship with Warp Drive Crosses into a Black HoleThe Schwarzchild black hole is the “perfect” black hole to use in this theoretical exploration of a warp drive crossing the event horizon. To figure out the scenario, Garattini and Zatrimalov decided to mathematically combine the equations describing the black hole and the ones describing the warp drive. Among other things, they found that it’s possible to “embed” the warp drive in the outer region of the black hole. The warp bubble itself is much smaller than the black hole and needs to be moving toward it. The black hole’s gravity affects the energy conditions needed to create and sustain the warp drive. That means you can theoretically decrease the amount of negative energy required to sustain the warp bubble. In addition, the researchers suggest that if the warp bubble is moving at less than the speed of light, it effectively erases the black hole horizon.
The research team also described the idea that such an occurrence could evoke the conversion of virtual particles into real ones in an electric field. If so, it could lead to the creation of mini warp drives in the lab.
Changing the Black Hole a BitInterestingly, the team also suggests that, if the warp bubble is moving slowly and is much smaller than the black hole horizon, it could increase the entropy of the black hole. However, as they state in their closing arguments, “there are potential problematic issues in other physical situations: namely, when the warp drive is completely absorbed by the black hole, it may decrease its mass, and, therefore, its entropy.
Likewise, when there is a larger warp bubble passing through a black hole, it would produce a ”screening” effect and de facto eliminate the horizon, making it impossible to define the black hole entropy in the Hawking sense. If warp drives are possible in nature, these issues indicate that we still do not understand them from the thermodynamic point of view.”
Warp Drive Technology Remains to be SeenSo, while this research may prove valuable theoretically, and could lead to lab production of mini black holes, many questions remain. Perhaps in the future, when we understand the quantum mechanics behind both of these objects, we might find warp technology a slam-dunk. If so, then, as ships travel through black holes, we could face a weird time. For example, signals from inside a black hole could get carried out by a warp bubble merging from the singularity. That would allow us to send images or recordings of what it’s like inside the event horizon—something nobody knows about today. There’s also a chance that those fearsome black holes could make a warp drive less difficult to achieve since they won’t need so much exotic “negative energy” source material.
For More InformationBlack Holes, Warp Drives, and Energy Conditions
The Warp Drive: Hyper-fast Travel Within General Relativity
Schwarzschild Black Hole Simulations
The post What if you Flew Your Warp Drive Spaceship into a Black Hole? appeared first on Universe Today.