You are here

News Feeds

Bernie Sanders prepares resolutions to punish Israel

Why Evolution is True Feed - Thu, 09/26/2024 - 7:30am

Forgive me if I put up two pieces on Israel’s wars today (i’m not sure what I’ll write about next), but it’s not only on my mind, it’s the main news besides the American election. (See the daily “Nooz” for this other stuff).

I don’t like to use the words “self-hating Jew,” for I don’t think that an anti-Semitic Jew can really hate himself or herself. (Yes, there are anti-Semitic Jews: who do you think runs “J Street” and “Jewish Voice for Peace?”).  I prefer “Jew-hating Jew,” and although that may seem a bit harsh when applied to Bernie Sanders, he has repeatedly taken actions against the state of Israel. It’s not because he hates Netanyahu, though I’m sure he does, but because he seemingly doesn’t favor the existence of the state of Israel. In other words, he’s an anti-Zionist, which to me equates to “anti-Semite,” ergo my characterization.

Again, I know some readers will disagree, but right now I think it’s the moral duty of the U.S. to help our closest ally in the Middle East—the only democracy in the Middle East—and fight against the terrorism of Hamas and Hezbollah. Given that the Israeli Army has taken great care not kill civilians as far as they can help it, and has produced one of the lowest civilians killed/Hamas terrorists killed in the history of warfare, there is no reason to decry Israel for a “disproportionate response” to being attacked by Hamas. For crying out loud, everyone agreed with Israel at the war’s outset that Hamas had to be eliminated after the butchery of last October 7. But when Israel tried to do that, and tried to avoid killing civilians, the world screamed “genocide” in response. It’s crazy.

So now, according to PBS, Bernie has prepared a resolution reducing American arms sales to Israel, just when it needs them to defend itself against Hezbollah as well. Click to read the PBS article.

An excerpt:

Sen. Bernie Sanders is preparing several resolutions that would stop more than $20 billion in U.S. arms sales to Israel, a longshot effort but the most substantive pushback yet from Congress over the devastation in Gaza ahead of the first year anniversary of the Israel-Hamas war.

In a letter to Senate colleagues on Wednesday, Sanders said the U.S. cannot be “complicit in this humanitarian disaster.” The action would force an eventual vote to block the arms sales to Israel, though majority passage is highly unlikely.

“Much of this carnage in Gaza has been carried out with U.S.-provided military equipment,” Sanders, I-Vt., wrote.

As the war grinds toward a second year, and with the outcome of President Joe Biden’s efforts to broker a cease-fire deal and hostage release uncertain, the resolutions from Sanders would seek to reign in Israeli Prime Minister Benjamin Netanyahu’s assault on Gaza. The war has killed some 41,000 people in Gaza after the surprise Oct. 7 Hamas-led attack that killed about 1,200 people in Israel, and abducted 250 others, with militants still holding around 100 hostages. [JAC: Where, PBS, did you get that figure, and how many of them were Hamas fighters?]

While it’s doubtful the politically split Senate would pass the measures, the move is designed to send a message to the Netanyahu regime that its war effort is eroding the U.S.’s longtime bipartisan support for Israel. Sanders said he is working with other colleagues on the measures.

Key Senate Democrats have been pushing the Biden administration to end the Israel-Hamas war and lessen the humanitarian crisis, particularly in Gaza, where people’s homes, hospitals, schools and entire Palestinian families are being wiped out.

I would ask Senator Sanders and all of his running dogs in the Senate, as well as the Israel-hating “squad” in the House, this question: “How do YOU propose to wipe out Hamas and end its terrorism if you put shackles on Israel, and, especially, call for a cease-fire that leaves Hamas in power?”

Yes, I know that we don’t know what will happen after Hamas is defeated, as it will be, but as I recall, when the war began, everyone agreed with Israel that Hamas needed to be extirpated. But when Israel started doing that, and civilians died (put most of their deaths at the door of Hamas), they decided that no, Israel cannot be allowed to win this war. And if Israel doesn’t win, Hamas’s terrorism will continue (remember, Hamas vowed to repeat October 7 over and over and over again).

So, it galls me endlessly when the “progressives” like Sanders conveniently neglect several facts:

  1.  Israel is not committing genocide in the Middle East.  The people who are doing so include Hamas, Hezbollah, and Bashar al-Assad of Syria, who has killed off 600,000 of his own people, apparently bent on a genocide of Syrians.  It’s clear that the terrorists want to wipe out Jews and the state of Israel, and that is genocide. It is not true that Israel’s aim is to wipe out all Palestinians. If they wanted to, they could have done so at any time in the last 50 years. They even gave Gaza to the Palestinians.
  2. If there was a permanent cease-fire and the war ended now, it would leave Hamas in power. That would guarantee that their terrorism against Israel would continue indefinitely along with their oppression of the people of Gaza. Hamas is an odious, murderous, theocratic, and hateful regime.
  3. Half of the death toll Sanders and everyone gives probably includes Hamas fighters, and of course those figures are provided by Hamas.  The ratio of civilians killed to Hamas soldiers killed is roughly between 1.3:1 and 1:1—very low for warfare and especially low for urban warfare. Remember that Hamas puts its weapons and rockets under schools, in hospitals and Gazan homes, and even in humanitarian zones. Why? I think nobody doubts that it is in Hamas’s expressed interest to ensure that Gazan civilians are killed to secure the world’s hatred of Israel.  So “40,000” is not the figure you want to bandy about.
  4. The “humanitarian” crisis in Gaza has been greatly exaggerated because tons more food is being delivered now than a few months ago. If Gazans are starving, it’s because Hamas is commandeering humanitarian aid. (I don’t think anybody doubts this. either)  Yes, a lot of Gazan infrastructure has been destroyed, but put that again at the door of Hamas.

If Sanders really wanted to do something constructive, he could pass a resolution hauling Hamas and Hezbollah before the International Court of Justice for genocide. But of course neither he nor anybody else will do that.

It’s clear that the “progressive” Left in America is palpably against Israel in this war, decrying it constantly but almost never mentioning the war crimes of Hamas and Hezbollah. The Democratic “squad” in the House, including Alexandria Ocasio-Cortez, Rashida Tlaib, and their allies, are part of this anti-Israel brigade. And I’m fairly certain that, if elected, Kamala Harris would join right in. That won’t make me vote for Trump, but I was certain, when I voted for Biden four years ago, that he would never become “woke”, for he vowed to “reach across the aisle.”  I was wrong.  And I’m pretty sure that Harris will be even more “progressive,” which is why Russia is trying to sabotage the U.S. elections in favor of Trump. (Their consideration is, of course, largely Ukraine.)

At any rate, opposition to Israel in the war is fueled by lies and misinformation, and, if I wanted to be cynical, I’d say that Bernie. his colleagues, and the Squad could care less if the state of Israel disappeared. And without US aid, it might.

One more comment, this one directed especially at Thomas “I Am a Moron” Friedman at the NYT. (See his latest column.) I’ll put it in caps: A TWO-STATE SOLUTION IS NOT THE “SOLUTION” TO THE WAR OR  THE EMNITY BETWEEN ISRAEL AND HAMAS.  The Palestinians don’t want such a solution (they’ve rejected it repeatedly, for what they want is a one-state solution that eliminates Israel), nor do the Israelis, who now realize that a Palestinian state abutting their own will subject them to constant terrorism. The two-state “solution” can be possible only if there are honest brokers and Palestinian leaders who truly want their people to thrive (I don’t see Netanyahu as an “honest broker” in this respect.)

Such a solution  if possible, is decades away. So people who propose such a “solution” are deeply ignorant of history. And that includes Bernie Sanders, who seems superannuated to me.

Categories: Science

Rachel Kushner’s Booker-shortlisted Creation Lake is top-notch

New Scientist Feed - Thu, 09/26/2024 - 7:15am
For an undercover operative, Sadie Smith takes unnecessary risks as she infiltrates an eco-activist group. Why? And where do the Neanderthals fit into Creation Lake, Rachel Kushner's Booker-shortlisted climate fiction novel? Emily H. Wilson loved finding out
Categories: Science

Readers’ wildlife photos

Why Evolution is True Feed - Thu, 09/26/2024 - 6:15am

We have a new submission, so I have at least two more days of reserve photos. Today’s photos are of LIONS and are from Phil Frymire, whose leopard photos were posted a week ago. As I said, I met him in Newark in line for the plane to Johannesburg; we were headed for separate safari trips and he recognized me. Phil’s captions are indented, and you can click on the photos to enlarge them.

Continuing with the big cats, here are some lion (Panthera leo) photos. We saw lions at both Timbavati and Mala Mala. One pride at Mala Mala had twenty members: two adult males and eighteen females, juveniles and cubs.

We begin with some nature red in tooth and claw. This is a Mala Mala pride feeding on a buffalo carcass.

We visited this kill site in Timbavati several times. A pride had taken down a pregnant giraffe and fed on it for several days. On the last day we visited, there was very little left. This female was gnawing on the scraps. You can see the giraffe’s hide in the foreground and its defleshed skull to the left.

Here she is biting with the side of her jaw, using the carnassial teeth to shear some meat off the bone.

Nursing cubs jockeying for position:

Mala Mala cubs with a bad case of mange which they are apparently transmitting to their mother:

Two juveniles:

Relaxing on the sand near the river at Mala Mala:

Profile of a Mala Mala male:

The same male showing the flehmen response, which moves scent molecules into the vomeronasal organ for analysis. He was part of a “lion wedding party”, as Jerry’s guide put it. I think our guide called it a “honeymoon”. [JAC: Actiually, DAN called it a “lion wedding party”.]

Another shot of the flehmen grimace. He was relentlessly following the female and sampling her rear end:

Categories: Science

AI tweaks to photos and videos can alter our memories

New Scientist Feed - Thu, 09/26/2024 - 6:00am
It has become trivially easy to use artificial intelligence to edit images or generate video to remove unwanted objects or beautify scenes, but doing so leads to people misremembering what they have seen
Categories: Science

A Great Comet for 2024?

Science blog of a physics theorist Feed - Thu, 09/26/2024 - 5:59am

What? There’s a comet coming?

In fact, it’s already here. Oh yes, it seems that 2024 may not just be the year of a terrific solar eclipse and spectacular outbursts of northern lights (and maybe, just maybe, a nova.) In morning twilight, if you live in the right latitudes, an ever-brightening comet can apparently be spotted right now. I haven’t seen it yet, but I’m hoping to get a chance.

Nothing in cometary life is guaranteed; comets can fall apart unexpectedly, or fail to brighten as expected. So far, though, Comet C/2023 A3 Tsuchinshan-ATLAS is looking promising; its tail may soon be longer than its name.

The comet will soon be seen in the evening sky. But for the next few days, it is visible in the morning sky during the last hour before sunrise. Depending on

  • which day it is — the comet moves noticeably across the sky from one day to the next — and
  • your latitude — close to the equator is better, and slightly south of the equator is best —

you may have an opportunity to find it. It will not be easy, as it will be close to where the Sun is soon to rise, and it is not bright enough to shine easily through the morning twilight. (Perhaps binoculars would help; I’m not sure.) But I have seen a photograph, so it can be found, with some effort.

You will definitely need a very low and clear horizon to see it this week. To get a sense of how high it might be above an ideal, unencumbered horizon, look at this informative chart made by Nick James (British Astronomical Association) and posted at spaceweather.com. It shows the comet’s altitude in degrees above the horizon, about 20 minutes before sunrise, for various latitudes (as labeled in the upper left corner; “+” means north, “-” means south), for each day over the next two weeks or so. In the US, you are best off in the next couple of days, and your chances are better you’re in the southern half of the country, around 30-35 degrees latitude or less. Much of northern Europe is probably out of luck for now. Over the coming few days, Africa, South and Central America, Australia and southern Asia should have the best views. Then the comet leaves the morning sky.

The comet may well be more easily and more conveniently visible in mid-October’s evening sky, so consider this the first but perhaps not the only opportunity to see it. Let me know if you manage to spot it this week!

Categories: Science

Dark Matter Could a Have Slight Interaction With Regular Matter

Universe Today Feed - Thu, 09/26/2024 - 5:39am

The reason we call dark matter dark isn’t because it’s some shadowy material. It’s because dark matter doesn’t interact with light. The difference is subtle, but important. Regular matter can be dark because it absorbs light. It’s why, for example, we can see the shadow of molecular clouds against the scattered stars of the Milky Way. This is possible because light and matter have a way to connect. Light is an electromagnetic wave, and atoms contain electrically charged electrons and protons, so matter can emit, absorb and scatter light. Dark matter isn’t electrically charged. It has no way to connect with light, and so when light and dark matter meet up they simply pass through each other.

All of our observations suggest that dark matter and light only have gravity in common. When dark matter is clustered around a galaxy, for example, its gravitational tug can deflect light. Because of this we can map the distribution of dark matter in the Universe by observing how light is gravitationally lensed around it. We also know that dark and regular matter interact gravitationally. The tug of dark matter causes galaxies to gather together into superclusters. But an unanswered question is whether dark and regular matter only interact gravitationally. If an atom and dark matter particle intersected, would they really just pass through each other?

Since we haven’t directly observed dark matter particles we can only speculate, but most dark matter models argue that gravity is the only common link with light and regular matter. Dark and regular matter clump around each other, but they don’t collide and merge like interstellar clouds. But a new study suggests the two do interact, which could reveal subtle aspects of the mysterious stuff.

The study looks at six ultrafaint dwarf galaxies, or UFDs. They are satellite galaxies near the Milky Way that seem to have far fewer stars than their mass would suggest. This is because they are mostly made of dark matter. If regular and dark matter only interact gravitationally, then the distribution of stars in these small galaxies should follow a certain pattern. If dark and regular matter interact directly, then this distribution will be skewed.

To test this the team ran computer simulations of both scenarios. They found that in the non-interacting model the distribution of stars should become more dense in the center of the UFDs and more diffuse at the edges. In the interacting model the stellar distribution should be more uniform. When they compared these models with observations of the six galaxies, they found the interacting model was a slightly better fit.

So it seems dark and regular matter interact in ways beyond their gravitational tugs. There isn’t enough data to pin down the exact nature of the interaction, but the fact there is any interaction at all is a surprise. It means that our traditional models of dark matter are at least partly wrong. It may also point the way toward new methods of detecting dark matter directly. In time we may finally solve the mystery of this dark, but not entirely invisible, material.

Reference: Almeida, Jorge Sánchez, Ignacio Trujillo, and Angel R. Plastino. “The Stellar Distribution in Ultrafaint Dwarf Galaxies Suggests Deviations from the Collisionless Cold Dark Matter Paradigm.” The Astrophysical Journal Letters 973.1 (2024): L15.

The post Dark Matter Could a Have Slight Interaction With Regular Matter appeared first on Universe Today.

Categories: Science

What Happened to the Atmosphere on Mars

neurologicablog Feed - Thu, 09/26/2024 - 5:10am

Of every world known to humans outside the Earth, Mars is likely the most habitable. We have not found any genuinely Earth-like exoplanets. They are almost sure to exist, but we just haven’t found any yet. The closest so far is Kepler 452-b, which is a super Earth, specifically 60% larger than Earth. It is potentially in the habitable zone, but we don’t know what the surface conditions are like. Within our own solar system, Mars is by far more habitable for humans than any other world.

And still, that’s not very habitable. It’s surface gravity is 38% that of Earth, it has no global magnetic field to protect against radiation, and its surface temperature ranges from -225°F (-153°C) to 70°F (20°C), with a median temperature of -85°F (-65°C). But things might have been different, and they were in the past. Once upon a time Mars had a more substantial atmosphere – today its atmosphere is less than 1% as dense as Earth’s. That atmosphere was not breathable, but contained CO2 which warmed the planet allowing for there to be liquid water on the surface. A human could likely walk on the surface of Mars 3 billion years ago with just a face mask and oxygen tank. But then the atmosphere mostly went away, leaving Mars the dry barren world we see today. What happened?

It’s likely that the primary factor was the lack of a global magnetic field, like we have on Earth. Earth’ magnetic field is like a protective shield that protects the Earth from the solar wind, which is charged so the particles are mostly diverted away from the Earth or drawn to the magnetic poles. On Mars the solar wind did not encounter a magnetic field, and it slowly stripped away the atmosphere on Mars. If we were somehow able to reconstitute a thick atmosphere on Mars, it too would slowly be stripped away, although that would take thousands of years to be significant, and perhaps millions of years in total.

But this may not have been the only process at work.  A recent study models the chemistry at the surface of Mars to see if perhaps the abundant CO2 in the early Mars atmosphere might still be there. What the model shows, based on known chemical reactions on Earth, is that CO2 in the early Mars atmosphere would have dissolved in high concentrations in any liquid water. As the CO2-rich water percolated through the crust of Mars it would have combined with olivine, an abundant iron-containing mineral on Mars. The oxygen would have combined with the iron, forming the red rusty color for which Mars is famous, while releasing the hydrogen. This hydrogen would then combine with CO2 to form methane. Over time the olivine would be converted to serpentine, which would then further react with water to form smectite, which today is very common in the clays near the surface of Mars.

The researchers calculate that if Mars has smectite clays down to 1,100 meters deep, that could contain enough sequestered carbon to account for the original amount of carbon in the early atmosphere of Mars. It is possible, therefore, that the atmosphere of Mars may mostly still be there, bound up in clays.

Does this have any practical application? Even if not, it is helpful to add to our knowledge of planetary science – how planets evolve and change over time. But it might also have implications for future Mars missions. A vast store of carbon could be quite useful. If some of that carbon is in the form of methane, that could be a valuable energy source.

In theory we could also release the CO2 from the smectite clays back into the atmosphere. Would this be a good thing (assuming it’s feasible)? On the plus side a thicker atmosphere would warm the planet, making it more livable. It would also reduce the need for pressurized suits and living spaces. Humans could survive in as little at 6% of an atmosphere on Earth – not comfortably, but technically survivable. If you get to 30-40% that is basically like being on top of a mountain, something humans could adapt to. We could theoretically get back to the point where a human could survive with just a mask and oxygen tank rather than a pressure suit.

The potential downside is dust storms. They are already bad on Mars and would be much worse with a thicker atmosphere. These occur because the surface is so dry. Ideally as we released CO2 into the atmosphere that would also melt the ice caps and release water from the soil. Surface water would reduce the risk of dust storms.

Terraforming Mars would be extremely tricky, and probably not feasible. But it is interesting to think about how we could theoretically do it. Then we would have the problem of maintaining the atmosphere against further soil chemistry and the solar wind. There has been discussion of how we could create an artificial magnetic field to protect the atmosphere, but again we are talking about massive geoengineering projects. This is all still in the realm of science fiction for now, but it is fun to think about theoretical possibilities.

 

The post What Happened to the Atmosphere on Mars first appeared on NeuroLogica Blog.

Categories: Skeptic

Camellia oil could be the greenest cooking oil – and the healthiest

New Scientist Feed - Thu, 09/26/2024 - 5:00am
Replacing some existing vegetable oil crops with camellia oil could boost production while reducing environmental impacts such as greenhouse gas emissions
Categories: Science

A New Rover Design Could Crawl Across the Moon for Decades Harvesting Water

Universe Today Feed - Thu, 09/26/2024 - 4:21am

We have known that water ice exists on the Moon since 1998. These large deposits are found in the permanently shadowed craters around the polar region. The challenge is how to get it since shadowed craters are not the best place for solar powered vehicles to operate. A team of engineers have identified a design for an ice-mining vehicle powered by americium-241. With a half-life of 432 years, this element is an ideal power source for a vehicle to operate in the dark for several decades. 

Ice in the polar regions of the Moon is of vital importance for our future space explorations, not just lunar visits but as we stretch our legs in the Solar System. Its thought to be ancient material deposited by comets or formed by interactions with solar wind. It is expensive to take materials to the Moon so harvesting on site is far more efficient. Ice on the Moon can provide drinking water, oxygen for breaking and even hydrogen for rocket fuel. Surveys suggest something in the region of 600 billion kilograms of ice deposited at the lunar poles. 

Exposed water ice (green or blue dots) in lunar polar regions and temperature. Credit: Shuai Li

The challenge facing future lunar harvesting missions is that operations in the permanently  shadowed regions (or PSRs as they have been called) cannot be powered by solar panels as is often the case. The environment is cold too, in the region of 40K, that’s -233?C and at those temperatures special power considerations are required. 

A team of researchers have been exploring the use of Radioisotope Power Systems (RPS) to provide thermal and electrical power systems. These power systems have been used before during deep space missions for example Voyager and New Horizons. They work by generating electricity using the heat that is released from the natural decay of a radioactive isotope usually plutonium-238.

Artist rendition of Voyager 1 entering interstellar space. (Credit: NASA/JPL-Caltech)

The team led by Marzio Mazzotti from the University of Leicester have explored an ice-mining rover using power generated by the radio activate decay fo Americium-241. It has a half-life of 432 years which means it takes 432 years for half of a sample of Americium to decay. During this time, half of the atoms in the substance will transform into a different element. Using this power source will provide a stable power supply for an ice-mining rover in the darkness of the lunar polar craters for decades.

Apollo 17 commander Eugene Cernan with the lunar rover in December 1972, in the moon’s Taurus-Littrow valley. Credit: NASA

Using a radioisotope power system is not new however the team came upon the idea that the excess heat that is not used can be used to thermally mine ice from samples of lunar material. The rover would be fitted with a sublimation plate that would turn any ice deposits into a gas which would be collected in a cold trap.

The team developed a model of its Thermal Management System and tested it for icy regolith (the fine dusty lunar surface) material with a water ice content of 0-10 vol %. Their simulations showed that it is possible to mine ice using thermal techniques in the PSR of the Moon using an RPS (I had to really concentrate writing that sentence!) powered lunar rover. 

Source : Ice-Mining Lunar Rover using Americium-241 Radioisotope Power Systems

The post A New Rover Design Could Crawl Across the Moon for Decades Harvesting Water appeared first on Universe Today.

Categories: Science

Planet in the 'forbidden zone' of dead star could reveal Earth's fate

New Scientist Feed - Thu, 09/26/2024 - 3:00am
A distant planet should have been consumed when its star expanded to become a red giant, perhaps offering insights into planetary migration
Categories: Science

AI could predict breast cancer risk via 'zombie cells'

Computers and Math from Science Daily Feed - Wed, 09/25/2024 - 3:35pm
Women worldwide could see better treatment with new AI technology which enables better detection of damaged cells and more precisely predict the risk of getting breast cancer, shows new research.
Categories: Science

How much should we worry about the health effects of microplastics?

New Scientist Feed - Wed, 09/25/2024 - 3:06pm
A flurry of studies has found microplastics in nearly every organ in the human body, from the brain to the testicles. But very few have revealed whether these tiny bits of plastic impact our health
Categories: Science

We now know who was cannibalised on the doomed Franklin expedition

New Scientist Feed - Wed, 09/25/2024 - 3:00pm
DNA and genealogical evidence reveal, for the first time, the identity of cannibalised remains recovered from the Franklin expedition
Categories: Science

Dinosaurs may have run like emus by keeping one foot on the ground

New Scientist Feed - Wed, 09/25/2024 - 12:00pm
It seems to be more energy efficient for emus to keep one foot on the ground when running at a moderate pace, and the same may have been true for dinosaurs
Categories: Science

How special is the Milky Way Galaxy?

Space and time from Science Daily Feed - Wed, 09/25/2024 - 11:40am
The SAGA Survey just published three new research articles that provide us with new insights into the uniqueness of our own Milky Way Galaxy after completing the census of 101 satellite systems similar to the Milky Way's.
Categories: Science

Researchers innovate sustainable metal-recycling method

Matter and energy from Science Daily Feed - Wed, 09/25/2024 - 11:40am
A research team has developed a method to recycle valuable metals from electronic waste more efficiently while significantly reducing the environmental impact typically associated with metal recycling.
Categories: Science

Mars' missing atmosphere could be hiding in plain sight

Matter and energy from Science Daily Feed - Wed, 09/25/2024 - 11:39am
New research suggests Mars' missing atmosphere -- which dramatically diminished 3.5 billion years ago -- could be locked in the planet's clay-covered crust. Water on Mars could have set off a chain reaction that drew CO2 out of the atmosphere and converted it into methane within clay minerals.
Categories: Science

Mars' missing atmosphere could be hiding in plain sight

Space and time from Science Daily Feed - Wed, 09/25/2024 - 11:39am
New research suggests Mars' missing atmosphere -- which dramatically diminished 3.5 billion years ago -- could be locked in the planet's clay-covered crust. Water on Mars could have set off a chain reaction that drew CO2 out of the atmosphere and converted it into methane within clay minerals.
Categories: Science

Space Travel Weakens the Heart, New Study Finds

Universe Today Feed - Wed, 09/25/2024 - 11:37am

It’s no secret that spending extended periods in space takes a toll on the human body. For years, NASA and other space agencies have been researching the effects of microgravity on humans, animals, and plants aboard the International Space Station (ISS). So far, the research has shown that being in space for long periods leads to muscle atrophy, bone density loss, changes in vision, gene expression, and psychological issues. Knowing these effects and how to mitigate them is essential given our future space exploration goals, which include long-duration missions to the Moon, Mars, and beyond.

However, according to a recent experiment led by researchers at Johns Hopkins University and supported by NASA’s Johnson Space Center, it appears that heart tissues “really don’t fare well in space” either. The experiment consisted of 48 samples of human bioengineered heart tissue being sent to the ISS for 30 days. As they indicate in their paper, the experiment demonstrates that exposure to microgravity weakens heart tissue and weakens its ability to maintain rhythmic beats. These results indicate that additional measures must be taken to ensure humans can maintain their cardiovascular health in space.

The study was led by Deok-Ho Kim and his colleagues from the Department of Biomedical Engineering at Johns Hopkins University (BME-JHU) and the JHU Center for Microphysiological Systems. They were joined by researchers from UC Boulder’s Ann and HJ Smead Department of Aerospace Engineering Sciences, the Institute for Stem Cell & Regenerative Medicine (ISCRM) and the Center for Cardiovascular Biology at the University of Washington, the Stanford Institute for Stem Cell & Regenerative Medicine, BioServe Space Technologies, and NASA’s Johnson Space Center. The paper that details their findings was published yesterday (September 23rd) in the Proceedings of the National Academy of Sciences.

Heart tissues within one of the launch-ready chambers. Credit: Jonathan Tsui

Previous research has shown that astronauts returning to Earth from the ISS suffer from a myriad of health effects consistent with certain age-related conditions, including reduced heart muscle function and irregular heartbeats (arrhythmias), most of which will dissipate over time. However, none of this research has addressed what happens at the cellular and molecular level. To learn more about these effects and how to mitigate them, Kim and his colleagues sent an automated “heart-on-a-chip” platform to the ISS for study.

To create this payload, the team relied on human-induced pluripotent stem cells (iPSCs), which can become many types of cells, to produce cardiomyocytes (heart muscle cells). These resulting tissues were placed in a miniaturized bioengineered tissue chip designed to mimic the environment of an adult human heart. The chips would then collect data on how the tissues would rhythmically contract, imitating how the heart beats. One set of biochips was launched aboard the SpaceX CRS-20 mission to the ISS in March 2020, while another was kept on Earth as a control group.

Once on the ISS, astronaut Jessica Meir tended the experiment, changing the liquid nutrients surrounding the tissues once each week while preserving tissue samples at specific intervals so gene readout and imaging analyses could be conducted upon their return to Earth. Meanwhile, the experiment sent real-time data back to Earth every 30 minutes (for 10 seconds at a time) on the tissue samples’ contractions and any irregular beating patterns (arrhythmias).

“An incredible amount of cutting-edge technology in the areas of stem cell and tissue engineering, biosensors and bioelectronics, and microfabrication went into ensuring the viability of these tissues in space,” said Kim in a recent Hub news release.

When the tissue chambers returned to Earth, he and his colleagues continued to maintain and collect data from the samples to see if there was any change in their abilities to contract. In addition to losing strength, the muscle tissues developed arrhythmias, consistent with age-related heart conditions. In a healthy human heart, the time between beats is about a second, whereas the tissue samples lasted nearly five times as long – though they returned to nearly normal once returned to Earth.

The team further found that the tissue cell’s protein bundles that help them contract (sarcomeres) were shorter and more disordered than those of the control group, another symptom of heart disease. What’s more, the mitochondria in the tissue samples grew larger and rounder and lost the characteristic folds that help them produce and use energy. Lastly, the gene readout in the tissues showed increased gene production related to inflammation and an imbalance of free radicals and antioxidants (oxidative stress).

This is not only consistent with age-related heart disease but also consistently demonstrated in astronauts’ post-flight checks. The team says these findings expand our scientific knowledge of microgravity’s potential effects on human health in space and could also advance the study of heart muscle aging and therapeutics on Earth. In 2023, Kim’s lab followed up on this experiment by sending a second batch of tissue samples to the ISS to test drugs that could help protect heart muscles from the effects of microgravity and help people maintain heart function as they age.

Meanwhile, the team continues to improve its tissue-on-a-chip system and has teamed up with NASA’s Space Radiation Laboratory to study the effects of space radiation on heart muscles. These tests will assess the threat solar and cosmic rays pose to cardiovascular health beyond Low Earth Orbit (LEO), where Earth’s magnetic field protects against most space radiation.

Further Reading: John Hopkins University, PNAS

The post Space Travel Weakens the Heart, New Study Finds appeared first on Universe Today.

Categories: Science

The chemistry behind making a perfect caramel sauce

New Scientist Feed - Wed, 09/25/2024 - 11:00am
Bake Off finalist and chemical biologist Josh Smalley shares his recipe for the perfect caramel sauce with Catherine de Lange
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator