You are here

News Feeds

This Ancient Galaxy Merger Will Produce a very Luminous Quasar

Universe Today Feed - Tue, 09/03/2024 - 12:15pm

In the contemporary Universe, massive galaxies are plentiful. But the Universe wasn’t always like this. Astronomers think that galaxies grew large through mergers, so what we see in space is the result of billions of years of galaxies merging. When galaxies merge, the merger can feed large quantities of gas into their centers, sometimes creating a quasar.

Much of this is theoretical and shrouded in mystery, but astronomers might have found evidence of a galaxy merger creating a quasar.

All galaxies contain interstellar gas, but some—typically younger ones—have a much higher concentration. When gas-rich galaxies merge, they trigger rapid star formation and feed large quantities of gas into the central black hole, which then flares brightly and appears as a luminous quasar.

A quasar is basically an extremely active black hole. It appears that all large galaxies host a supermassive black hole in their centers, and when these black holes are actively feeding, they’re called active galactic nuclei (AGN.) Quasars are the most luminous of all AGN and can outshine entire galaxies.

But quasars are mostly a thing of the past. Quasar activity seems to have peaked about 10 billion years ago, which is one reason there are still so many questions about how they form.

Astronomers have spotted two ancient, distant galaxies merging. Both have dim quasars at their centers. Could they be the progenitors of bright, massive quasars in the early Universe? One international team of researchers thinks so.

Their results are in new research published in The Astrophysical Journal titled “Merging Gas-rich Galaxies That Harbor Low-luminosity Twin Quasars at z = 6.05: A Promising Progenitor of the Most Luminous Quasars.” Takuma Izumi from the National Astronomical Observatory of Japan is the lead author.

The pair of distant, dim quasars detected with the Subaru Telescope. Image Credit: NAOJ/Izumi et al. 2024.

“When we first observed the interaction between these two galaxies, it was like watching a dance, with the black holes at their centers having started their growth.”

Takuma Izumi, NAOJ

Quasars become extremely luminous and are more easily observed, but by that time, the merger that created them has played out. Astronomers need to see the dim ones in a pre-merger state to find answers to their questions. They want to know what processes govern merging gas-rich galaxies and how some of the gas is taken up in a burst of star formation while some of it is funnelled into the center, creating a quasar.

“While multiwavelength observations of quasars have progressed significantly in recent years, understanding of their progenitors lags behind,” the authors write in their paper.

At z = 6.05, these quasars are extraordinarily distant and ancient. The light reaching us now left these objects about 12.7 billion years ago in the Universe’s Cosmic Dawn. Due to the expansion of the Universe, the light has been travelling for about 23.5 billion light years. For many of these photons, their long journey ended when they reached the Subaru Telescope and the ALMA radio telescope.

The Subaru Telescope is an optical/infrared telescope on the summit of Maunakea, Hawaii, operated by the National Astronomical Observatory of Japan (NAOJ). It is equipped with the Hyper Suprime-Cam, a 900-megapixel digital camera with an extremely wide field of view. Together, the Subaru telescope and Hyper Suprime-Cam allow astronomers to detect very faint objects in surveys.

Subaru/Hyper Suprime-Cam discovered the pair of dim galaxies earlier this year with help from the Gemini North Telescope. Yoshiki Matsuoka, at Ehime University in Japan, was looking over images taken by the Subaru Telescope and noticed a faint patch of red. “While screening images of quasar candidates I noticed two similarly and extremely red sources next to each other,” says Matsuoka, “The discovery was purely serendipitous.”

The Subaru Telescope, with its Hyper Suprime-Cam, detected the pair of galaxies. Image Credit:

The pair of quasars the Subaru detected is so dim that astronomers assumed it was a pre-merger pair. But to determine the exact nature of the objects, lead author Izumi and his colleagues turned to another powerful observatory: ALMA, the Atacama Large Millimetre/submillimetre Array. To understand what they were seeing, the researchers needed to see how the gas in the galaxies was behaving. ALMA is one of astronomers’ most powerful tools for observing gas.

Most of the gas in galaxies is hydrogen, but it can be difficult to detect. ALMA observes what’s called the CII absorption line. Since both hydrogen and CII are commonly found in gas clouds, the CII line serves as a tracer for hydrogen.

By observing the distribution and motion of hydrogen in the galaxies, the astronomers concluded that the pair is in the process of merging. Two pieces of evidence support their conclusion: the bridge of matter connecting them and the motion of the gas.

This figure from the research shows the quasar locations C2 and C1. It also shows the ‘bridge’ and ‘tail’ features, both signs that the pair of galaxies is merging. “Both the Bridge and the Tail are most likely formed by interactions of the host galaxies of C1 and C2,” the authors write. Image Credit: Izumi et al. 2024.

However, establishing that the pair is merging was just the first step. The real question is if the pair of merging galaxies will produce a luminous quasar. To determine that, the researchers had to measure the amount of gas.

The panel on the left is a velocity map of the galaxies and their quasars, marked C2 and C1. The panel on the right shows the four stages of the merger, including stage IV, the observed stage. Image Credit: Izumi et al. 2024.

Using ALMA, the researchers determined that the galaxies hold 100 billion solar masses of gas. That’s more gas than some of the galaxies that host the brightest quasars. This extraordinarily large amount of gas won’t be depleted quickly. It’s enough to trigger and sustain both explosive post-merger star formation and fuelling of the supermassive black hole.

“According to models of merger-driven galaxy evolution, both star formation and AGN are activated by the interaction of gas-rich galaxies,” the authors write in their research. “Thus, we expect that this pair will evolve into a luminous quasar with a high SFR of greater than 1000 solar masses yr?1, comparable to the value for optically luminous quasars observed so far at high redshifts.”

Astronomers concluded that the pair of galaxies are interacting and in the process of merging. Image Credit: ALMA/Izumi et al. 2024.

“When we first observed the interaction between these two galaxies, it was like watching a dance, with the black holes at their centers having started their growth. It was truly beautiful,” said lead author Izumi.

These findings are significant because they provide astronomers with perspectives not only on quasar formation and explosive star formation but also on galaxy structure and motion.

“With the combined power of the Subaru Telescope and ALMA, we have begun to unveil the nature of the central engines (supermassive black holes), as well as the gas in the host galaxies,” Izumi said.

Finding a pair of pre-merger quasars is a milestone achievement. Quasars have puzzled astronomers since they were first detected with radio astronomy in the 1950s. At first, they didn’t know what they were, and astronomers referred to them as quasi-stellar objects (QSOs) and quasi-stellar radio sources. The name was shortened to quasar, and it stuck.

By 1960, astronomers had detected hundreds of quasars. Now we know what they are, but we have questions about how these objects come to be. This study is answering some of them, but astronomers always crave a deeper understanding of nature, and according to Izumi, the pair is ripe for further observations which should uncover some answers.

Izumi points out that the properties of the stars in both host galaxies are unknown. “Using the James Webb Space Telescope, which is currently operational, we could learn about the stellar properties of these objects. As these are the long-sought ancestors of high-luminosity quasars, which should serve as a precious cosmic laboratory, I hope to deepen our understanding of their nature and evolution through various observations in the future,” Izumi said.

The post This Ancient Galaxy Merger Will Produce a very Luminous Quasar appeared first on Universe Today.

Categories: Science

Assorted, distinctive behavior of molten uranium salt revealed by neutrons

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:50am
New research addresses the fundamental science necessary to increase the efficiency of nuclear energy. Researchers have now documented the unique chemistry dynamics and structure of high-temperature liquid uranium trichloride salt, a potential nuclear fuel source for next-generation reactors.
Categories: Science

Assorted, distinctive behavior of molten uranium salt revealed by neutrons

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:50am
New research addresses the fundamental science necessary to increase the efficiency of nuclear energy. Researchers have now documented the unique chemistry dynamics and structure of high-temperature liquid uranium trichloride salt, a potential nuclear fuel source for next-generation reactors.
Categories: Science

Lab develops protein assembly road map for gas vesicles

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:49am
Bioengineers developed a road map for the protein-protein interactions that give rise to gas vesicles, naturally occurring nanobubbles with potential use in biomedical applications.
Categories: Science

Discovery of glass-forming liquid electrolytes as a new liquid category

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:49am
Chemists have found a novel glass-forming liquid electrolyte that exhibits specific lithium-ion conduction. They study the speciation and dipole reorientation dynamics in the glass-forming liquid electrolyte by means of Raman and dielectric relaxation spectroscopy to understand the specific lithium-ion conduction, contributing to advancements in battery electrolyte research.
Categories: Science

Novel green chemistry: A safe, low-cost, and eco-friendly conversion process for the synthesis of sulfonyl fluorides

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:49am
A research group has developed a safe, cost-effective, and environmentally-friendly method to synthesize sulfonyl fluorides. By reacting thiols and disulfides with SHC5 and potassium fluoride, they achieved a green synthesis process with non-toxic by-products. This method simplifies the production of sulfonyl fluorides, making it suitable for chemical and industrial applications, aligning with Sustainable Development Goals.
Categories: Science

Turning glycerol into gold: a new process makes biodiesel more profitable

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:49am
An electrooxidation process efficiently converts glycerol, a byproduct of biodiesel production, into high-value three-carbon compounds.
Categories: Science

Gigantic asteroid impact shifted the axis of Solar System's biggest moon

Space and time from Science Daily Feed - Tue, 09/03/2024 - 11:49am
Around 4 billion years ago, an asteroid hit the Jupiter moon Ganymede. Now, a researcher realized that the Solar System's biggest moon's axis has shifted as a result of the impact, which confirmed that the asteroid was around 20 times larger than the one that ended the age of the dinosaurs on Earth, and caused one of the biggest impacts with clear traces in the Solar System.
Categories: Science

Finger wrap uses sweat to provide health monitoring at your fingertips--literally

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:49am
A sweat-powered wearable has the potential to make continuous, personalized health monitoring as effortless as wearing a Band-Aid. Engineers have developed an electronic finger wrap that monitors vital chemical levels -- such as glucose, vitamins, and even drugs -- present in the same fingertip sweat from which it derives its energy.
Categories: Science

Finger wrap uses sweat to provide health monitoring at your fingertips--literally

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:49am
A sweat-powered wearable has the potential to make continuous, personalized health monitoring as effortless as wearing a Band-Aid. Engineers have developed an electronic finger wrap that monitors vital chemical levels -- such as glucose, vitamins, and even drugs -- present in the same fingertip sweat from which it derives its energy.
Categories: Science

Plant proteins could be radical alternative to oil-based super lubricants

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:49am
An oil-free super-lubricant created from potato proteins could pave the way for sustainable engineering and biomedical applications, thanks to new research.
Categories: Science

Mathematicians model a puzzling breakdown in cooperative behavior

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:49am
A model developed by evolutionary mathematicians shows that as conditions for cooperation improve between two species, mutually beneficial behavior can unexpectedly become unbalanced. Cooperative behavior pools in one species, the other consumes the spoils.
Categories: Science

How bright is the universe's glow? Study offers best measurement yet

Space and time from Science Daily Feed - Tue, 09/03/2024 - 11:49am
Over billions of years, the universe's stars and galaxies shined their light into space, leaving behind an imperceptibly faint night light known as the cosmic optical background. NASA's New Horizons spacecraft has traveled to the edge of Earth's solar system and captured the most accurate measurement of this glow to date.
Categories: Science

How cheerful is that water bottle?

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:48am
New research shows consumers use 'happier' words to search for products when they are in a good mood. Researchers have connected those positive search terms with an increased likelihood of clicking on search engine ads.
Categories: Science

Pregnancy-related heart failure is under-detected; AI-enabled stethoscope helped doctors diagnose twice as many cases

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:48am
Heart failure during pregnancy is a dangerous and often under-detected condition because common symptoms -- shortness of breath, extreme fatigue and trouble breathing while lying down -- are easily mistaken for typical pregnancy discomforts. A new study showed an artificial intelligence (AI)-enabled digital stethoscope helped doctors identify twice as many cases of heart failure compared to a control group that received usual obstetric care and screening.
Categories: Science

A double twist makes cracking easier to resist

Matter and energy from Science Daily Feed - Tue, 09/03/2024 - 11:48am
Additive manufacturing, precision robotics and architected design markedly increase crack resistance in concrete.
Categories: Science

Keep devices out of bed for better sleep

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:48am
Despite what we've been led to believe, the timing of evening screen use, rather than the activity itself, negatively impacts youth sleep, a new study has found.
Categories: Science

Artificial intelligence likely to play an increasing role in scientific publications

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:48am
In the coming years, AI is poised to transform the writing of scientific manuscripts, assist in reviewing them, and help editors select the most impactful papers.
Categories: Science

How do new words arise in social media?

Computers and Math from Science Daily Feed - Tue, 09/03/2024 - 11:48am
The more centrally connected someone is within their social media network, the more likely that new words they use will become adopted into mainstream language, according to a new study.
Categories: Science

Will Gervais — The Science of Disbelief: Understanding Atheism and the Evolution of Religion

Skeptic.com feed - Tue, 09/03/2024 - 11:00am
https://traffic.libsyn.com/secure/sciencesalon/mss464_Will_Gervais_2024_09_03.mp3 Download MP3

In his new book Disbelief: The Origins of Atheism in a Religious Species, Will Gervais, PhD., a global leader in the psychological study of atheism, shows that the ubiquity of religious belief and the peculiarities of atheism are connected pieces in the puzzle of human nature. Does God exist? This straightforward question has spawned endless debate, ranging from apologists’ supposed proofs of God’s existence to New Atheist manifestos declaring belief in God a harmful delusion.

It’s undeniable that religion is a core tenet of human nature. It is also true that our overwhelmingly religious species is also as atheistic as it’s ever been. Yet, no scientific understanding of religion is complete without accounting for those who actively do not believe. In this refreshing and revelatory book, Gervais argues that religion is not an evolutionary puzzle so much as two evolutionary puzzles that can only be solved together. First is the Puzzle of Faith: the puzzle of how Homo sapiens – and Homo sapiens alone – came to be a religious species. Second is the Puzzle of Atheism: how disbelief in gods can exist within our uniquely religious species. The result is a radically cohesive theory of both faith and atheism, showing how we became a uniquely religious species, and why many are now abandoning their belief.

Through a firsthand account of breakthroughs in the scientific study of atheism, including key findings from cognitive science, cultural evolution, and evolutionary psychology, Disbelief forces a rethinking of the prevailing theories of religion and reminds both believers and atheists of the shared psychologies that set them on their distinct religious trajectories. In casual prose and with compelling examples, Gervais explains how we became religious, why we’re leaving faith behind, and how we can get along with others across the religious divides we’ve culturally evolved.

Will Gervais, PhD, is a cultural evolutionary psychologist and has been a global leader in the scientific study of atheism for over a decade. Dr. Gervais’s research has been featured in media such as The New York Times, the Washington Post, National Public Radio, Der Speigel, Psychology Today, Vox, and Scientific American. His interdisciplinary work, lying at the intersection of cultural evolution, evolutionary psychology, and cognitive science, has garnered international scientific recognition. He was named a Rising Star by the Association for Psychological Science and is the recipient of the Margaret Gorman Early Career Award from the American Psychological Association and the SAGE Young Scholar Award from the Foundation for Personality and Social Psychology.

Gervais and Shermer discuss:

  • What is religion?
  • Theism, Atheism, Agnosticism, Deism, Pantheism, etc. defined
  • How many atheists and agnostics and religious skeptics are there really?
  • Atheism and morality, trust, politics, etc.
  • Why are atheists so unpopular?
  • Metaphysical atheism vs. epistemological atheism (or agnosticism)
  • Popular nonanswers for religion and belief in God(s) (the Puzzle of Faith)
  • Role(s) of religion in history and society today
  • Is religion and belief in God(s) adaptive or a byproduct?
  • What cognitive features of the brain are engaged in faith, religion, & belief in God?
  • Patternicity, Agenticity, Sensed presence effect, essentialism, dualism, theory of mind, teleology
  • Big Gods vs. animism, polytheism, supernaturalism
  • Folk physics (pre-Newtonian) and biology (creationism)
  • Why some religions are so much more successful than others
  • Group selection vs. cultural selection
  • Is religion good for society?
  • Is religion good for personal health and happiness?
  • When we colonize Mars will far future humans on other planets believe in God?
  • Does religion need to be replaced with something?
  • Enlightenment Humanism, Secular Humanism, and other alternatives.

If you enjoy the podcast, please show your support by making a $5 or $10 monthly donation.

Categories: Critical Thinking, Skeptic

Pages

Subscribe to The Jefferson Center  aggregator