You are here

News Feeds

LEGO Bricks Printed out of Space Dust

Universe Today Feed - Wed, 07/03/2024 - 1:36pm

There have been many proposals for building structures on the Moon out of lunar regolith. But here’s an idea sure to resonate with creators, mechanical tinkerers, model builders and the kid inside us all.

What about using actual LEGO bricks?

Researchers ground up a 4.5-billion-year-old meteorite and used the dust to 3D print LEGO-style space bricks. They actually click together like the plastic variety, with so far only one downside: they only come in one color, grey.

Want to see some of these lunar LEGOs? LEGO will showcase the space bricks at some of its stores.

Creating building materials on the Moon or Mars from the material on hand means construction materials don’t have to be transported from Earth. This would be a huge savings in launch costs because less weight would have to be boosted from Earth.

A group of scientists from ESA (European Space Agency) were inspired by LEGO bricks, and with the advances in 3D printing, had the idea to print space bricks and test how they would work for construction.

The only problem was that except for the Moon rocks brought back by the Apollo astronauts – which are highly guarded for scientific study only — there’s not any lunar regolith available on Earth to experiment with.

But meteorite dust is a close cousin to lunar regolith. The ESA team was able to get a meteorite that was discovered in Northwest Africa in 2000 and is about 4.5 billion years old. It is made of metal grains and chondrules, similar to Moon dust.

Inspired by LEGO, ESA scientists have used dust from a meteorite to 3D-print LEGO-style ‘space bricks’ to test out construction ideas for a future Moon base. Credit: The LEGO Group

They mixed the meteorite dust with a some other things, like a polymer called polylactide and regolith simulant and 3D printed bricks that mimic and behave just like LEGO bricks. While they aren’t smooth like regular LEGO bricks, ESA said the space bricks gave ESA’s space engineers the flexibility to build and test a variety of structures using this new material.

“It’s no secret that real-world scientists and engineers sometimes try out ideas with LEGO bricks,” said Emmet Fletcher, Head of ESA’s Branding and Partnerships Office. “ESA’s space bricks are a great way to inspire young people and show them how play and the power of the imagination have an important role in space science, too.”

“Nobody has built a structure on the Moon, so it was great to have the flexibility to try out all kinds of designs and building techniques with our space bricks,” said . ESA Science Officer Aidan Cowley. “It was both fun and useful in scientifically understanding the boundaries of these techniques.”

Below is a list of where the lunar LEGOs will be on display, and the LEGO website has additional details. Hopefully the lunar LEGOs will inspire both children and adults about space and to encourage them to build their own LEGO Moon bases.

USA

The LEGO Store, Mall of America, Bloomington, Minnesota
The LEGO Store, Disney Springs, Florida
The LEGO Store, Water Tower Place, Chicago
The LEGO Store, Disneyland Resort, California
The LEGO Store, 5th Avenue, New York

Canada

The LEGO Store, West Edmonton

UK

The LEGO Store, Leicester Square, London

Germany

The LEGO Store, München Zentrum
The LEGO Store, Cologne

Denmark

The LEGO Store, Copenhagen
LEGO House, Billund

Spain

The LEGO Store, Barcelona

France

The LEGO Store, Paris

Netherlands

The LEGO Store, Amsterdam

Australia

The LEGO Store, Sydney

The post LEGO Bricks Printed out of Space Dust appeared first on Universe Today.

Categories: Science

Basketball-Sized Meteorites Strike the Surface of Mars Every Day

Universe Today Feed - Wed, 07/03/2024 - 11:18am

NASA’s InSight Mars Lander faced some challenges during its time on the red planet’s surface. Its mole instrument struggled to penetrate the compacted Martian soil, and the mission eventually ended when its solar panels were covered in dust. But some of its instruments performed well, including SEIS, the Seismic Experiment for Interior Structure.

SEIS gathered Mars seismic data for more than four years, and researchers working with all of that data have determined a new meteorite impact rate for Mars.

SEIS was designed to probe Mars’ interior structure by measuring seismic waves from Marsquakes and impacts. It measured over 1300 seismic events. There’s no way to absolutely measure how many of them were from impacts, but scientists working with the data have narrowed it down.

NASA’s InSight lander placed its seismometer onto Mars on Dec. 19, 2018. SEIS was later covered with a protective shell to shield it from wind. Image Credit: NASA/JPL-Caltech

Their results are in new research published in Nature Astronomy titled “An estimate of the impact rate on Mars from statistics of very-high-frequency marsquakes.” The lead authors are Géraldine Zenhäusern and Natalia Wójcicka, from the Institute of Geophysics, ETH Zurich, and the Department of Earth Science and Engineering, Imperial College, London, respectively.

“This is the first paper of its kind to determine how often meteorites impact the surface of Mars from seismological data.”

Domenico Giardini, Professor of Seismology and Geodynamics at ETH Zurich and co-Principal Investigator for the NASA Mars InSight Mission.

Though SEIS was an effective instrument, it couldn’t always tell what each seismic event was. Only a handful of the events it detected were powerful enough to determine their location. However, six events in close proximity to the InSight lander were confirmed as meteorite impacts because they were correlated with acoustic atmospheric signals that meteors make when they enter Mars’ atmosphere. The six events belong to a larger group called very high-frequency (VF) events.

While the source process for a typical marsquake measuring magnitude 3 takes several seconds, an impact-generated quake takes much less time because of the collision’s hypervelocity. These are the VF events.

During about three years of recording time, InSight and SEIS detected 70 VF events. 59 of them had good distance estimates, and according to the researchers, a handful of them were “higher quality B VF events,” meaning their signal-to-noise ratios are strong. “Although a non-impact origin cannot be definitively excluded for each VF event, we show that the VF class as a whole is plausibly caused by meteorite impacts,” the authors explain in their paper.

This figure from the research shows envelopes of recorded VF quality B events sorted by distance, plotted from 120?seconds before to 1,100?seconds after the event. They’re aligned by their first signal (Pg) arrival. The blue lines are the second signal arrival (Sg.) The six red events are the confirmed impact events, and for those, the black lines show where the “chirp” signal arrives. The chirp signal is a signature of impact events. Image Credit: Zenhäusern, Wójcicka et al. 2024.

This led to a new estimate of Mars’s impact frequencies. The researchers say that between 280 and 360 meteoroids about the size of basketballs strike Mars each year and excavate craters greater than 8 meters (26 ft) in diameter. That’s almost one every day at the upper end. “This rate was about five times higher than the number estimated from orbital imagery alone. Aligned with orbital imagery, our findings demonstrate that seismology is an excellent tool for measuring impact rates,” Zenhäusern said in a press release.

Impact rates on different bodies in the Solar System are one way of understanding the age of their surfaces. Earth’s surface is young because the planet is so geologically active. Earth is also much easier to study in greater detail, for obvious reasons. But for bodies like the Moon and Mars, impact rates can tell us the ages of various surfaces, leading to a more thorough understanding of their history.

Orbital images and models based on preserved lunar craters have been the main tools used by planetary scientists to infer impact rates. The data from the Moon was used to extrapolate Mars’ impact rate. But there are problems with that method. Mars has more powerful gravity and is closer to the source of most meteors, the asteroid belt.

That means more meteoroids strike Mars than the Moon, and that had to be calculated somehow. Conversely, Mars has widespread dust storms that can obscure craters in orbital images, while the lunar surface is largely static. Mars also has different types of surface regions. In some regions, craters stand out; in others, they don’t. Trying to accurately account for that many differences when extrapolating impact rates from the Moon to Mars is challenging.

This work shows that seismometers can be a more reliable way to understand impact rates.

“We estimated crater diameters from the magnitude of all the VF-marsquakes and their distances, then used it to calculate how many craters formed around the InSight lander over the course of a year. We then extrapolated this data to estimate the number of impacts that happen annually on the whole surface of Mars,” Wójcicka explained.

This figure from the research shows crater size and seismic moment for the six confirmed impacts near the InSight lander. Circles show single craters, and triangles show the effective diameter of crater clusters. The vertical error bars reflect the uncertainty in seismic moment magnitude derived using standard error propagation techniques. The horizontal error bars are given by the resolution of HiRISE images used to determine the crater sizes. Image Credit: Zenhäusern, Wójcicka et al. 2024.

“While new craters can best be seen on flat and dusty terrain where they really stand out, this type of terrain covers less than half of the surface of Mars. The sensitive InSight seismometer, however, could hear every single impact within the landers’ range,” said Zenhäusern.

These results extend beyond Mars. Understanding Mars also helps us understand the wider Solar System. “The current meteoroid impact rate on Mars is vital for determining accurate absolute ages of surfaces throughout the Solar System,” the authors write in their paper. Without accurate surface ages, we don’t have an accurate understanding of the Solar System’s history.

Now we know that an 8-metre (26-feet) crater is excavated somewhere on Mars’ surface almost daily, and a 30-metre (98-feet) crater is a monthly occurrence. But it’s about more than just crater size. These hypervelocity impacts create blast zones that dwarf the crater itself. The blast zones can easily be 100 times larger than the crater. So, a better understanding of impact rates can make robotic missions and future human missions safer.

“The higher overall number of impacts and the higher relative number of small ones found in our study show that meteoritic impacts might be a substantial hazard for future explorations of Mars and other planets without a thick atmosphere,” the authors write in their conclusion.

This study is a win for InSight and SEIS and for the researchers who pieced this together.

“This is the first paper of its kind to determine how often meteorites impact the surface of Mars from seismological data – which was a level one mission goal of the Mars InSight Mission,” says Domenico Giardini, Professor of Seismology and Geodynamics at ETH Zurich and co-Principal Investigator for the NASA Mars InSight Mission. “Such data factors into the planning for future missions to Mars.”

The post Basketball-Sized Meteorites Strike the Surface of Mars Every Day appeared first on Universe Today.

Categories: Science

How mathematics can help you divide anything up fairly

New Scientist Feed - Wed, 07/03/2024 - 11:00am
Whether you are sharing a cake or a coastline, maths can help make sure everyone is happy with their cut, says Katie Steckles
Categories: Science

The best science fiction books of 2024 so far

New Scientist Feed - Wed, 07/03/2024 - 11:00am
From a quantum-bubble reality show from Peng Shepherd to a murderous valet bot from Adrian Tchaikovsky, enjoy this year's best science fiction so far if you're heading off on your travels, says Emily H. Wilson
Categories: Science

Haunting photos bring fictional female explorers to life

New Scientist Feed - Wed, 07/03/2024 - 11:00am
Tonje Bøe Birkeland's photographs imagine the exploits of fictional female scientists and adventurers from the past
Categories: Science

Cool solutions could head off the climate-damaging rush for air con

New Scientist Feed - Wed, 07/03/2024 - 11:00am
Demand for air conditioning will only grow as temperatures rise, sending energy consumption soaring. But there are some interesting ways to deal with the issue, finds Graham Lawton
Categories: Science

Hot news: abandoned bird's nest 'still there', reports professor

New Scientist Feed - Wed, 07/03/2024 - 11:00am
Feedback, as ever bringing you the most up-to-date news from the floors of the National Roman Museum, can reveal that an abandoned nest has not been removed from the mouth of a statue, according to a visitor
Categories: Science

New Quiet Place movie adds to irrational fears over marauding aliens

New Scientist Feed - Wed, 07/03/2024 - 11:00am
Sci-fi depictions of extraterrestrial invasions can heighten anxiety about our efforts to make first contact, says METI president Douglas Vakoch
Categories: Science

The best science non-fiction books of 2024 so far

New Scientist Feed - Wed, 07/03/2024 - 11:00am
Want to save our seas? Make exotic cocktails? Ponder life's meaning? Whatever your plans this July, Simon Ings rounds up the year's best non-fiction so far
Categories: Science

The benefits of anti-ageing medicines will outweigh the downsides

New Scientist Feed - Wed, 07/03/2024 - 11:00am
We shouldn't fear life-extending medical advances based on unintended consequences. If we can make lives longer and healthier, potential problems are a price worth paying
Categories: Science

More Evidence that the Kuiper Belt is Bigger Than We Thought

Universe Today Feed - Wed, 07/03/2024 - 10:28am

As the New Horizons spacecraft continues its epic journey to explore the Kuiper Belt, it has a study partner back here on Earth. The Subaru Telescope on the Big Island of Hawaii is deploying its Hyper Suprime-Cam imager to look at the Kuiper Belt along the spacecraft’s trajectory. Its observations show that the Kuiper Belt extends farther than scientists thought.

The observations support the search for Kuiper Belt objects (KBO) for New Horizons to explore next. So far, Subaru has found many smaller bodies out there. However, none of them are along the spacecraft’s trajectory. In a big surprise to the science teams at Subaru, at least two of those objects orbit beyond 50 astronomical units, which is the current assumed “limit” of the Belt.

If observers continue to find more such objects outside that 50 AU “limit”, it means the Kuiper Belt is bigger than everybody thought. Or it could exist in two parts—a sort of inner and outer Kuiper Belt. Scientists already know that the belt is much dustier than expected, thanks to observations taken with the dust counter onboard New Horizons.

Implications of an Expanded or Two-part Kuiper Belt

Beyond simply expanding the limit of the Kuiper Belt, the Subaru observations have profound implications for our understanding of the solar nebula, according to Fumi Yoshida, who led the research for the Subaru observation team. “Looking outside of the Solar System, a typical planetary disk extends about 100 AU from the host star (100 times the distance between the Earth and the Sun), and the Kuiper Belt, which is estimated to extend about 50 AU, is very compact. Based on this comparison, we think that the primordial solar nebula, from which the Solar System was born, may have extended further out than the present-day Kuiper Belt,” said Yoshida.

Let’s say the primordial disk was quite large. Then it’s possible that undiscovered planetary bodies clipped the outer edge of the Kuiper Belt. If that happened, then it makes sense to search the outer limits of the current Belt to find such a cut-off object. It’s also possible that perhaps that truncation created a second Kuiper Belt beyond the currently known belt. What it’s like is anybody’s guess, although it’s probably dusty and very likely has at least a few larger objects. So, even if there’s nothing along the New Horizons trajectory, using Subaru to study the distribution of objects it has found will help scientists to understand the evolution of the Solar System.

The Hyper Suprime-Cam at the Subaru Telescope in Hawai’i is part of the search for New Horizons flyby targets. It has a special filter to aid in the search. Credit: Subaru Telescope. Searching for KBOs

Subaru Telescope’s has been searching for more KBOs to explore ever since New Horizons flew past Arrokoth in 2019. The idea is to find additional KBOs along the path of flight. The search focused two Hyper Suprime-Cam fields along the spacecraft’s trajectory through the Belt. The New Horizons team spent about 30 half-nights to find more than 240 outer Solar System objects.

The next step was for a Japanese team to analyze images from those observations. However, they used a different method than the mission team did and found seven new outer Solar System objects. The scientists then analyzed the HSC data with a Moving Object Detection System developed by JAXA. Normally it detects near-Earth asteroids and other space debris. Those types of bodies move very fast, compared to more distant ones. So, looking for very dim, faraway, slow-moving objects was a challenge. That’s because the team had to adjust for the speed of the Kuiper Belt objects. Then they applied some updated image analysis to confirm their findings. Scientists now know the orbits of two of the seven new objects and they’ve been assigned provisional designations by the Minor Planet Center (MPC.

 Schematic diagram showing the orbits of the two discovered objects (red: 2020 KJ60, purple: 2020 KK60). The plus symbol represents the Sun; green lines are the orbits of Jupiter, Saturn, Uranus, and Neptune. The numbers on the vertical and horizontal axes represent the distance from the Sun in astronomical units. (1 AU corresponds to the distance between the Sun and the Earth). The black dots represent classical Kuiper Belt objects. These are thought to be a group of icy planetesimals that formed early in Solar System history. The gray dots represent outer Solar System objects with a semi-major axis greater than 30 au. These include objects scattered by Neptune. They extend far out, and many have orbits inclined with respect to the ecliptic plane. The circles and dots in the figure represent their positions on June 1, 2024. Credit: JAXA Continuing to Search the Kuiper Belt

The discovery of more KBOs in the outer Solar System (along with New Horizons’ continued dust detection activities) tells scientists that there’s more to the Kuiper Belt than anyone expected. The proof will be in continued Subaru observations to detect and confirm more objects “out there.”

“The mission team’s search for Kuiper Belt objects using Hyper Suprime-Cam continues to this day, and a series of papers will be published in the future, mainly by the North American group,” said Yoshida. “This research, the discovery of sources with the potential to expand the Kuiper Belt region using a method developed in Japan and led by Japanese researchers, serves as a precursor to those publications.”

For More Information

A New Horizon for the Kuiper Belt: Subaru Telescope’s Wide-Field Observations
A Deep Analysis of New Horizons’s KBO Search Images
The PI’s Perspective: Needles in the Cosmic Haystack

The post More Evidence that the Kuiper Belt is Bigger Than We Thought appeared first on Universe Today.

Categories: Science

How to increase the rate of plastics recycling

Matter and energy from Science Daily Feed - Wed, 07/03/2024 - 10:18am
A US nationwide bottle deposit program could increase recycling of PET plastic to 82 percent, with nearly two-thirds of all PET bottles being recycled into new bottles, at a net cost of just a penny a bottle when demand is robust. At the same time, policies would be needed to ensure a sufficient demand for the recycled material.
Categories: Science

Moon 'swirls' could be magnetized by unseen magmas

Space and time from Science Daily Feed - Wed, 07/03/2024 - 10:18am
Mysterious, light-colored swirls on Moon's surface could be rocks magnetized by magma activity underground, laboratory experiments confirm.
Categories: Science

AI model to improve patient response to cancer therapy

Computers and Math from Science Daily Feed - Wed, 07/03/2024 - 10:18am
A new artificial intelligence tool that can help to select the most suitable treatment for cancer patients has been developed.
Categories: Science

Scientists discover way to 'grow' sub-nanometer sized transistors

Computers and Math from Science Daily Feed - Wed, 07/03/2024 - 10:18am
A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.
Categories: Science

Scientists discover way to 'grow' sub-nanometer sized transistors

Matter and energy from Science Daily Feed - Wed, 07/03/2024 - 10:18am
A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.
Categories: Science

A breakthrough in inexpensive, clean, fast-charging batteries

Matter and energy from Science Daily Feed - Wed, 07/03/2024 - 10:18am
Scientists have created an anode-free sodium solid-state battery. This brings the reality of inexpensive, fast-charging, high-capacity batteries for electric vehicles and grid storage closer than ever.
Categories: Science

Researchers develop predictive model for cross-border COVID spread

Computers and Math from Science Daily Feed - Wed, 07/03/2024 - 10:17am
Post-COVID research has extensively focused on the efficacy of internal travel restrictions and cross-border travel has received less attention due to challenges in accessing quality data. In a major multidisciplinary collaboration effort across Finland, Sweden, Norway, and Denmark, a group of researchers -- including mathematicians, physicists and computer scientists -- have published a pioneering study on the spread of infections across Nordic borders from spring until the end of 2020. The report sheds light on the efficacy of cross-border travel restrictions, helping us better understand which measures actually make a difference.
Categories: Science

Chemists synthesize an improved building block for medicines

Matter and energy from Science Daily Feed - Wed, 07/03/2024 - 10:17am
Research could help drug developers improve the safety profiles of medications and reduce side effects.
Categories: Science

A genetic algorithm for phononic crystals

Matter and energy from Science Daily Feed - Wed, 07/03/2024 - 10:17am
Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator