You are here

News Feeds

If Gravitons Exist, this Experiment Might Find Them

Universe Today Feed - Fri, 08/30/2024 - 4:53pm

There are four fundamental forces in the Universe; strong, weak, electromagnetic and gravity. Quantum theory explains three of the four through the interaction of particles but science has yet to discover a corresponding particle for gravity. Known as the ‘graviton’, the hypothetical gravity particle is thought to constitute gravitational waves but it hasn’t been detected in gravity wave detector. A new experiment hopes to change that using an acoustic resonator to identify individual gravitons and confirm their existence. 

The four fundamental forces of nature govern the Universe. Gravity is one that many people are familiar with yet we do not fully understand how it works. Its effects are obvious though as the attraction between objects with mass. It keeps the planets in orbit around the Sun, the Moon in orbit around the Earth and us pinned to the surface of planet Earth. One of the earliest attempts to describe it was  from Isaac Newton who stated that gravity was proportional to the mass of objects and inversely proportional to the square of the distance between them. Even at the largest scale of the cosmos it seems to be essential for the structure of the Universe. 

Portrait of Newton in 1702, painted by Godfrey Kneller. Credit: National Portrait Gallery, London

One of the challenges with gravity is that, unlike the other fundamental forces, it can only be explained in a classical sense. Quantum physics can explain the other three forces by way of particles; the electromagnetic force has the photon, the strong nuclear force has the gluon, the weak nuclear force has the W and Z bosons but gravity has, well nothing yet. Other than the hypothesised graviton. The graviton can be thought of as the building block of gravity much as bricks are the building blocks of a house or atoms the building blocks of matter. 

Detectors like LIGO the Laser Interferometer Gravitational-Wave Observatory, can detect gravity waves from large scale events like mergers of black holes and neutron stars yet to date, a graviton has never been detected. That may soon be about to change though. A team of researchers led by physics professor Igor Pikovski from the Stevens Institute of Technology suggests a new solution. By utilising existing detection technology, which is essentially a heavy cylinder known as an acoustic resonator, the team propose adding improved energy state detection methods known as quantum sensing. 

LIGO Observatory

The proposed solution, explains Pikovski “is similar to the photo-electric effect that led Einstein to the quantum theory of light, just with gravitational waves replacing electromagnetic waves.” The secret is the discrete steps of energy that are exchanged between the material and the waves as single gravitons are absorbed. The team will use LIGO to confirm gravity wave detections and cross reference with their own data. 

The new approach has been inspired by gravity wave data that have been detected on Earth. Waves detected in 2017 came from a collision event between two city-sized super dense neutron stars. The team calculated the parameters that would facilitate the absorption probability for a single graviton. 

The team began thinking through a possible experiment. Using data from gravitational waves that have previously been measured on Earth, such as those that arrived in 2017 from a collision of two Manhattan-sized (but super-dense) faraway neutron stars, they calculated the parameters that would optimise the absorption probability for a single graviton. Their development led to devices similar to the Weber bar (thick, heavy 1 ton cylindrical bars) to allow gravitons to be detected. 

The bars would be suspended in the newly designed quantum detector, cooled to the lowest possible energy state and the passage of a gravity wave would set it vibrating. The team then hope to be able to measure the vibration using super-sensitive energy detectors to see how the vibrations changed in discrete steps, indicating a graviton event. 

It’s an exciting time for gravity based physics and we are most definitely getting closer to unravelling its mysteries. Unfortunately though, the super-sensitive detectors are not available yet but according to Pikovski’s team, they are not far away. Pikovski summed it up “We know that quantum gravity is still unsolved, and it’s too hard to test it in its full glory but we can now take the first steps, just as scientists did over a hundred years ago with quanta of light.”

Source : New research suggests a way to capture physicists’ most wanted particle — the graviton

The post If Gravitons Exist, this Experiment Might Find Them appeared first on Universe Today.

Categories: Science

Study combines data, molecular simulations to accelerate drug discovery

Matter and energy from Science Daily Feed - Fri, 08/30/2024 - 1:41pm
Researchers have found a new method to increase both speed and success rates in drug discovery. The study offers renewed promise when it comes to discovering new drugs.
Categories: Science

How Vegetation Could Impact the Climate of Exoplanets

Universe Today Feed - Fri, 08/30/2024 - 1:27pm

The term ‘habitable zone’ is a broad definition that serves a purpose in our age of exoplanet discovery. But the more we learn about exoplanets, the more we need a more nuanced definition of habitable.

New research shows that vegetation can enlarge the habitable zone on any exoplanets that host plant life.

Every object in a solar system has an albedo. It’s a measurement of how much starlight the object reflects back into space. In our Solar System, Saturn’s moon, Enceladus, has the highest albedo because of its smooth, frozen surface. Its albedo is about 0.99, meaning about 99% of the Sun’s energy that reaches it is reflected back into space.

There are many dark objects in space with low albedoes. Some say that another of Saturn’s moons, Iapetus, has the lowest albedo.

Earth, the only living planet, has an albedo of about 0.30, meaning it reflects 30% of the Sunlight that reaches it back into space. Many factors affect the albedo. Things like the amount of ice cover, clouds in the atmosphere, land cover vs ocean cover, and even vegetation all affect Earth’s albedo.

This image made of satellite data shows the regions of Earth covered by forests with trees at least five meters (16.5 ft.) tall. Image Credit: NASA/LandSat

We live in an age of exoplanet discovery. We now know of more than 5,000 confirmed exoplanets, with many more on the way. Though all planets are interesting scientifically, we’re particularly interested in exoplanets that are potentially habitable.

A team of Italian researchers is examining exoplanet habitability through the lens of vegetation and albedo. Their work is in a paper to be published in the Monthly Notices of the Royal Astronomical Society titled “Impact of vegetation albedo on the habitability of Earth-like exoplanets.” The lead author is Erica Bisesi, a Postdoctoral Researcher at the Italian National Institute for Astrophysics’ Trieste Astronomical Observatory.

“Vegetation can modify the planetary surface albedo via the Charney mechanism, as plants are usually darker than the bare surface of the continents,” the researchers write in their paper. Compared to a dead planet with bare continents, an exoplanet with vegetation cover should be warmer if they’re both the same distance from similar stars.

The Charney mechanism is named after Jule Charney, an American meteorologist who is considered by many to be the father of modern meteorology. It’s a feedback loop between vegetation cover and how it affects rainfall.

In their work, the researchers updated the Earth-like Surface Temperature Model to include two types of dynamically competing vegetation: grasslands and forests, with forests included in the seedling and mature stages.

“With respect to a world with bare granite continents, the effect of vegetation-albedo feedback is to increase the average surface temperature,” the authors explain. “Since grasses and trees exhibit different albedos, they affect temperature to different degrees.”

On Earth, grasslands are found on every continent except Antarctica. They’re one of the largest biomes on Earth. Image Credit: NASA Earth Observatory

Since grasses and trees affect albedo differently, vegetation’s effect on planetary albedo is linked to the outcome of their dynamic competition. “The change in albedo due to vegetation extends the habitable zone and enhances the overall planetary habitability beyond its traditional outer edge,” the authors write.

The researchers considered four situations:

  • Complete tree dominance (forest worlds).
  • Complete grass dominance (grassland worlds).
  • Tree/Grass coexistence.
  • Bi-directional worlds

In a bi-directional world, vegetation converges to grassland or to forest, depending on the initial vegetation fractions. In these worlds, seed propagation across latitudes widens the region where forests and grasslands coexist.

The researchers found that vegetation cover lowers a planet’s albedo and warms the climate, nudging the outer limit of the habitable zone. However, they also arrived at more specific results.

They found that the outcome of dynamic competition between trees and grasses affected how vegetation is distributed across latitudes. “The achieved temperature-vegetation state is not imposed, but it emerges from the dynamics of the vegetation-climate system,” they explain.

This figure from the research shows how Earth’s liquid water habitability index is shifted outward by different vegetation regimes. It’s based on Earth’s modern distribution of continents. Image Credit: Bisesi et al. 2024.

The researchers worked with the idea of a ‘pseudo-Earth.’ The pseudo-Earth has a constant fraction of oceans at all bands of latitude, affecting the distribution of continents and vegetated surfaces relative to the equator, where most of the Sun’s energy strikes the planet.

This figure from the research shows how a pseudo-Earth’s liquid water habitability index is shifted outward by different vegetation regimes. It’s based on an equal distribution of oceans at all bands of latitude. Image Credit: Bisesi et al. 2024.

The researchers also worked with a hypothetical dry pseudo-Earth. On this Earth, ocean cover is limited to 30%, while the Earth and the pseudo-Earth both have 70% ocean cover.

The simulated dry pseudo-Earth has less ocean coverage than Earth, meaning there’s more surface area for vegetation to cover. Image Credit: Bisesi et al. 2024.

The team reached some conclusions about vegetation cover, albedo, and habitability.

The more continents a planet has, the greater the climate warming effect from vegetation. When the simulations resulted in a grass-dominated world, the effect was weaker because grass raises albedo. When the simulations resulted in a forest-dominated world, the effect was greater.

The researchers’ key point is that none of this is static. Outcomes are driven by the competition between grasslands and forests for resources, which in turn is driven by the average temperature in each latitudinal band. “In general, thus, the achieved temperature-vegetation state is not imposed, but it emerges from the dynamics of the vegetation-climate system,” they explain.

This is especially pronounced on the dry pseudo-Earth. Because there is so much land cover, vegetation has an even stronger effect on albedo and climate. “However, the ocean fraction cannot be too small, as
in this case, the whole hydrological cycle could be modified,” the researchers add.

Overall, vegetation’s effect on albedo and climate is small. But we can’t dismiss its effect on habitability. Habitability is determined by a myriad of factors.

This issue is very complex. For instance, on a planet where grasslands and forests coexist, external factors like stellar luminosity and orbital variations can be buffered depending on where the continents are and how much their vegetation affects albedo purely by location.

The authors consider their work as a basic first step in this issue. They only included certain types of grasslands and forests, didn’t include the relative availability of water, and didn’t include atmospheric CO2 concentrations.

“The dynamics explored here are extremely simplified and represent only a first step in the analysis of vegetation habitability interactions.” they write. “Future work will also include a simplified carbon balance model in the study of planetary habitability.”

“This endeavour should be seen as a first step of a research program aimed at including the main climate-vegetation feedbacks known for Earth in exoplanetary habitability assessments,” they write.

The post How Vegetation Could Impact the Climate of Exoplanets appeared first on Universe Today.

Categories: Science

Quantum holograms can send messages that disappear

New Scientist Feed - Fri, 08/30/2024 - 1:12pm
Entangled particles of light can transmit holographic images that can be selectively erased, allowing for secure communications that can also be deleted
Categories: Science

Why is the US military getting ready to launch new spy balloons?

New Scientist Feed - Fri, 08/30/2024 - 1:00pm
The US military has prioritised deploying high-altitude balloons that can carry out surveillance
Categories: Science

Generative AI creates playable version of Doom game with no code

New Scientist Feed - Fri, 08/30/2024 - 12:00pm
A neural network can recreate the classic computer game Doom despite using none of its code or graphics, hinting that generative AI could be used to create games from scratch in future
Categories: Science

A New Test Proves How to Make the Event Horizon Telescope Even Better

Universe Today Feed - Fri, 08/30/2024 - 11:50am

Want a clear view of a supermassive black hole’s environment? It’s an incredible observational challenge. The extreme gravity bends light as it passes through and blurs the details of the event horizon, the region closest to the black hole. Astronomers using the Event Horizon Telescope (EHT) just conducted test observations aimed at “deblurring” that view.

The EHT team collaborated with scientists at the Atacama Large Millimeter/submillimeter Array (ALMA) and other facilities to do the tests. The antennas detected light from the centers of distant galaxies at a radio frequency of 354 GHz, equivalent to a wavelength of 0.87 mm.

A map of the Event Horizon Telescope observatories used in recent test observations at 0.87 mm of distant galaxies, to bump up its resolution. Credit: ESO/M. Kornmesser

This pilot experiment achieved observations with detail as fine as 19 microarcseconds. That’s the highest-ever resolution ever achieved from Earth’s surface. Although there are no images from the tests, the observations “saw” strong light signals from several distant galaxies—and that was only using a few antennas. Once the team focused the full worldwide EHT array on targets, they could see objects at a resolution of 13 microarcseconds. That’s about like looking at a bottle cap on the surface of the Moon—from Earth’s surface!

Sharpening the Event Horizon Telescope

These observational tests are a big breakthrough because it means scientists can make images of black holes that are 50% sharper than previous observations. The EHT’s groundbreaking first observations of M87’s black hole and Sagittarius A* in our galaxy happened just a few years ago, at a wavelength of 1.33 mm. Those images were amazing, but the science teams wanted to do better.

“With the Event Horizon Telescope, we saw the first images of black holes using the 1.3-mm wavelength observations, but the bright ring we saw, formed by light bending in the black hole’s gravity, still looked blurry because we were at the absolute limits of how sharp we could make the images,” said the observation’s co-lead Alexander Raymond of the Jet Propulsion Laboratory. “At 0.87 mm, our images will be sharper and more detailed, which in turn will likely reveal new properties, both those that were previously predicted and maybe some that weren’t.”

The first ever actual image of a black hole, taken in 2019. This shows the black hole at the heart of galaxy M87 Credit: Event Horizon Telescope Collaboration

According to EHT Founding Director Sheperd “Shep” Doeleman, an astrophysicist at the CfA and co-lead on a recent paper about the observations, the recent tests will improve the view of our galaxy’s central supermassive black hole, as well as others. “Looking at changes in the surrounding gas at different wavelengths will help us solve the mystery of how black holes attract and accrete matter, and how they can launch powerful jets that stream over galactic distances,” he said. In addition, the new technique should reveal even more dim, distant black holes than the EHT has already seen.

Creating a Big Radio Eye to Study Black Holes

Think of the Event Horizon Telescope as a giant, Earth-sized virtual radio telescope. Instead of one massive dish the size of our planet, it links together multiple radio dishes across the globe. The technique is called “very long baseline interferometry” with each observatory sending its data to a central processing center. For this test, the array consisted of six facilities, including the Atacama Array. The experiment succeeded in expanding the wavelength range of the EHT. Usually, to get better resolution, astronomers have to build bigger telescopes, but this one’s already Earth-sized. So, goosing the wavelength was the only choice.

The current locations of observatories that make up the full Event Horizon Telescope. (Courtesy EHT)

The test observations at higher resolution mark the first time the VLBI technique was used successfully at a wavelength of 0.87 mm. It’s a challenging measurement to make because water vapor in the atmosphere absorbs more waves at 0.87mm than at 1.3mm. As a result, astronomers worked to improve the EHT’s resolution by increasing the bandwidth of the instrumentation. Then, they had to wait for good observing conditions at all the test sites.

The improvements should allow astronomers to get high-fidelity “movies” of the event horizon around a black hole. Of course, astronomers want more upgrades to the existing EHT arrays. Planned improvements include new antennas, as well as improvements to detectors and other instruments. The result should be some pretty spectacular images and animations of material trapped in the extreme gravitational clutch of a black hole.

Revisiting Old Black Hole Friends

Future observations will include return observations of the supermassive black holes in M87 and the heart of the Milky Way Galaxy. Both are surrounded by accretion disks full of material swirling into the black hole. Once that material crosses the event horizon (the gravitational point of no return), it’s gone forever. So, it’s important to track that kind of action around a black hole. That’s where the EHT comes in handy.

Researchers using the Event Horizon Telescope hope to generate more and better images like this of supermassive black hole Sag. A’s event horizon. Image Credit: EHT.

According to Shep Doeleman, the details should be amazing. “Consider the burst of extra detail you get going from black and white photos to color,” he said. “This new ‘color vision’ allows us to tease apart the effects of Einstein’s gravity from the hot gas and magnetic fields that feed the black holes and launch powerful jets that stream over galactic distances.”

With this in mind, he added that the Collaboration is excited to reimage M87* and Sgr A* at both 1.3mm and 0.87mm and move from detecting black hole “shadows” to more precisely measuring their sizes and shapes, which can help to estimate a black hole’s spin and orientation on the sky.

If all that happens as they hope, the 400-member EHT consortium will certainly be able to fulfill its founding aim. That’s to provide the most detailed radio images of the mysterious beasts that lurk in the hearts of most galaxies.

For More Information

EHT Scientists Make Highest-resolution Observations Yet from the Surface of Earth
Event Horizon Telescope Main Page
First Very Long Baseline Interferometry Detections at 870 µm

The post A New Test Proves How to Make the Event Horizon Telescope Even Better appeared first on Universe Today.

Categories: Science

Does mpox cause lingering symptoms like long covid?

New Scientist Feed - Fri, 08/30/2024 - 11:00am
Amid rising cases of mpox in Central Africa, it is important to uncover whether this virus causes symptoms even after the infection has cleared
Categories: Science

Michael Shermer — Unmasking the Unknown: UFOs, Alien Tech, and Military Secrets?

Skeptic.com feed - Fri, 08/30/2024 - 11:00am
https://traffic.libsyn.com/secure/sciencesalon/mss462_Michael_Shermer_2024_08_30.mp3 Download MP3

Extraordinary claims require extraordinary proof. It’s no different when it comes to UFO frenzy. There is a need to separate fact from fiction in UAP claims.

In this episode, Shermer delves into the growing interest in UAPs (formerly UFOs), especially in light of UFOlogist Lue Elizondo’s book Imminent. Elizondo claims the U.S. government has long been aware of extraterrestrial intelligence, backed by reports of unidentified craft surveilling military sites. The episode explores these bold assertions and the tension between believers and skeptics, including scientists like Avi Loeb and institutions like the Department of Defense, which have disputed such claims.

Listeners interested in extraterrestrial intelligence, UFOs, and government secrecy will find this discussion compelling. Shermer reflects on historical UFO figures like Bob Lazar and Travis Walton, questioning their credibility while exploring the widespread belief in imminent “disclosure” of alien contact. Through interviews with experts and analysis of various UAP phenomena, the episode challenges listeners to discern fact from fiction, offering an intriguing examination of what could be humanity’s most profound discovery.

If you enjoy the podcast, please show your support by making a $5 or $10 monthly donation.

Categories: Critical Thinking, Skeptic

Astronomers puzzled by little red galaxies that seem impossibly dense

New Scientist Feed - Fri, 08/30/2024 - 10:00am
‘Little red dot’ galaxies seen by JWST appear to be much more tightly packed with stars than other galaxies, raising big questions about how they came to be this way
Categories: Science

I am out of the bush!

Why Evolution is True Feed - Fri, 08/30/2024 - 9:09am

Just a note to let you know that, after five fantastic days in the huge (7,600 mi², 19,623 km2) Kruger National Park, driving and watching for animals at least eight hours each day (you aren’t allowed to leave your vehicle between camps or rest stops), I have returned to Hoedspruit for one night, flying on to Cape Town tomorrow.

Every day in Kruger was a new adventure, and we never knew what we’d see. Rosemary and I (kudos to her for organizing most of this trip) were driven around by the best guide ever, Isaack Maboea, full of information, stories, and, best of all, a crack spotter of wildlife. (I’m lousy at it; I can’t even see stuff until several people point it out to me, while Isaack can see an unobtrusive brown bird a hundred yards away.) The spottings included giraffe. lion, leopards, zebra, many species of antelope, Southern ground hornbills, lilac-breasted rollers, warthogs, African buffalo, and so on ad infinitum. All will be shown.

Since each day in Kruger provided a panoply of new stuff, I’ll divide my posts on the park into five separate installments, hopefully one per day after I get settled in Cape Town.

All I can say now, after the rude transition from the bush to the town, is that anybody with eyes who loves nature and wildlife should come to Kruger at least once, stay at least four nights, and hire Isaack to be their guide and driver.

After I’d heard that there were a handful white (leucistic, not albino) lions in the huge park, I kept begging Isaack to show me one. This morning, when we left camp for one final day of animal-watching before leaving the park, he told me that he’d had a dream last night that his ancestors came to him, telling him that he’d find that white lion for me (one of the ones in the park is named Casper).  Sure enough, he turned right after leaving the hut encampment and, about two miles down the road was a tawny (regular) lion along with. . . . CASPER!!! Yes, a leucistic lion, though I’m not sure it’s the one called Casper. It looked like this one taken from Wikipedia. But you’ll have to wait to see my own photo until day five of my own photo posts on Kruger.

Benjamint444, CC BY-SA 3.0 via Wikimedia Commons

It turned out that Isaack belongs to a WhatsApp group of Kruger guides who tell each other where they’ve spotted wildlife, and he heard from it yesterday that a white lion was sighted near our camp. He was just ribbing me about his ancestors’ message, though he does have a form of spiritual belief involving consulting his ancestors.

I’ll be in Cape Town until Sept. 8, making the long flight back to Washington, D.C. and then on to Chicago. Let’s hope for no cancellations this time.

More when I get settled in Cape Town–in a hotel that has internet.

Categories: Science

Ultracold quantum battery could be charged with quantum tunnelling

New Scientist Feed - Fri, 08/30/2024 - 9:00am
Atoms tunnelling through a quantum battery could charge it and also keep it from losing energy, which could give an advantage over conventional batteries
Categories: Science

Topological quantum simulation unlocks new potential in quantum computers

Computers and Math from Science Daily Feed - Fri, 08/30/2024 - 8:09am
Researchers have successfully simulated higher-order topological (HOT) lattices with unprecedented accuracy using digital quantum computers. These complex lattice structures can help us understand advanced quantum materials with robust quantum states that are highly sought after in various technological applications.
Categories: Science

Transparency is often lacking in datasets used to train large language models

Computers and Math from Science Daily Feed - Fri, 08/30/2024 - 8:09am
The Data Provenance Explorer can help machine-learning practitioners make more informed choices about the data they train their models on, which could improve the accuracy of models deployed in the real world.
Categories: Science

Novel chemical tool aims to streamline drug-making process

Matter and energy from Science Daily Feed - Fri, 08/30/2024 - 8:09am
The invention of a tool capable of unlocking previously impossible organic chemical reactions has opened new pathways in the pharmaceutical industry to create effective drugs more quickly.
Categories: Science

Upcycling excess carbon dioxide with tiny microbes

Matter and energy from Science Daily Feed - Fri, 08/30/2024 - 8:09am
While some microbes can make people sick or spoil food, others are critical for survival. These tiny organisms can also be engineered to make specific molecules. Researchers have rewired one such microbe to help tackle greenhouse gases in the atmosphere: It takes in carbon dioxide (CO2) gas and produces mevalonate, a useful building block for pharmaceuticals.
Categories: Science

AI tool maps out cell metabolism with precision

Computers and Math from Science Daily Feed - Fri, 08/30/2024 - 8:07am
Scientists have developed an AI tool that creates detailed models of cellular metabolism, making it easier to understand how cells function.
Categories: Science

ESA Cluster Satellite to Reenter in Early September

Universe Today Feed - Fri, 08/30/2024 - 7:21am

The first of a set of groundbreaking Cluster satellites is set for a controlled reentry next week.

The European Space Agency is paving the way in controlled reentry technology. ESA recently announced that plans to terminate the first of four Cluster satellites is about to come to fruition in early September, with the reentry of Salsa.

The Reentry

Salsa is one of four dance-themed Cluster satellites. The other three are Rumba, Samba and Tango. ESA controllers used the remaining thruster fuel on the spacecraft back in January to lower the perigee of the mission down to around 100 kilometers, which will assure destructive reentry for the 550 kilogram satellite over the South Pacific on or around September 8th. The area the satellite will meet its demise is known as ‘Point Nemo’ or the Pacific Ocean Uninhabited Area. The region has seen several large reentries over the years, including the Mir space station and ESA’s Automated Transfer Vehicle. The region will likely see the demise of the International Space Station sometime around 2030.

Salsa’s final reentry track. Credit: ESA

“By studying how Salsa burns up, which parts might survive, for how long and in what state, we will learn much about how to build ‘zero debris’ satellites,” says Tim Flohrer, (ESA-Space Debri Office) in a recent press release.

ESA’s Malarguee tracking station in Argentina. Credit: ESA A Pioneering Mission

ESA designed the Cluster mission to explore space weather interactions with the Earth’s magnetic environment as the four spacecraft fly in a tetrahedral configuration through the planet’s magnetosphere. The four spacecraft fly out to a distant apogee of about 117,000 kilometers (over three times farther out versus geosynchronous orbit), and orbit the Earth once every 54 hours.

Anatomy of Cluster-Salsa’s orbital trajectory and reentry. Credit: ESA

Launched in the summer of 2000, the Cluster satellites had a 5-year nominal mission, which lasted well over two decades. The missions have since proven to be pioneers in space weather research. The mission also escaped glitches and software failures over the years, including a bug requiring a “dirty hack” in 2010. Cluster II was also a replacement for the original set of Cluster satellites, which were lost on the inaugural launch of the Ariane-5 rocket on June 4th, 1996 from the Kourou Space Center. The mission ended in an explosion 37 seconds after liftoff.

Cluster satellites in the clean room at Baikonur ahead of encapsulation and launch. Credit: ESA Controlling Reentries

This sort of ‘targeted reentry’ for a long duration mission is one of the first of its kind for ESA. The zero-debris conclusion to the mission exceeds international standards. Furthermore, it also addresses issues surrounding the mitigation of debris in low Earth orbit. On Earth, ESA’s worldwide Estrack network will follow Salsa during its final orbits, and an airborne campaign is underway to spot the final reentry. ESA made a similar effort to image the Aeolus satellite in 2023, shortly before reentry.

Engineers will apply a similar technique to the SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) and Proba-3 missions. These are also set to enter a similar far-ranging orbit around the Earth. SMILE is the follow-on mission to Cluster, and is launching in late 2025. ESA will launch the Proba-3 solar observatory next month. The mission will feature a free-flying, solar eclipsing disk.

You can spot the cluster satellites including Salsa on their final days. Salsa is COSPAR ID 2000-041A/26411in the NORAD satellite catalog, and listed in Heavens-Above. The satellites reach naked eye visibility on a good perigee pass.

After the demise of Salsa, Rumba will also reenter in November of next year, followed by Tango and Samba in August 2026.

While this is the ‘Last Dance’ for Salsa, the efforts to study space weather and come to terms with space debris continue.

Follow @ESAOperations and @ESA_Cluster on Twitter for the latest updates on Salsa leading up to reentry.

The post ESA Cluster Satellite to Reenter in Early September appeared first on Universe Today.

Categories: Science

Behavioral Science Needs to Return to the Basics

Skeptic.com feed - Fri, 08/30/2024 - 7:00am

Over the past decade behavioral science, particularly psychology, has come under fire from critics for being fixated on progressive political ideology, most notably Diversity, Equity, and Inclusion (DEI). The critics’ evidence is, unfortunately, quite strong. For example, a recent volume, Ideological and Political Bias in Psychology,1 recounts many incidents of scholarly censorship and personal attacks that a decade ago might have only been conceivable as satire.

We believe that many problems plaguing contemporary behavioral science, especially for issues touching upon DEI, can best be understood, at their root, as a failure to adhere to basic scientific principles. In this essay, we will address three fundamental scientific principles: (1) Prioritize Objective Data Over Lived Experience; (2) Measure Well; and (3) Distinguish Appropriately Between Correlation and Causation. We will show how DEI scholarship often violates those principles, and offer suggestions for getting behavioral science back on track. “Getting back to the basics” may not sound exciting but, as athletes, musicians, and other performers have long recognized, reinforcing the fundamentals is often the best way to eliminate bad habits in order to then move forward.

The Failure to Adhere to Basic Scientific Principles
Principle #1: Prioritize Objective Data Over Lived Experience

A foundational assumption of science is that objective truth exists and that humans can discover it.2, 3, 4, 5 We do this most effectively by proposing testable ideas about the world, making systematic observations to test the ideas, and revising our ideas based on those observations. A crucial point is that this process of proposing and testing ideas is open to everyone. A fifth grader in Timbuktu, with the right training and equipment, should be able to take atmospheric observations that are as valuable as those of a Nobel Prize-winning scientist from MIT. If the fifth grader’s observations are discounted, this should only occur because their measurement methods were poor, not because of their nationality, gender, age, family name, or any other personal attribute.

A corollary of science being equally open to all is that an individual’s personal experience or “lived experience” carries no inherent weight in claims about objective reality. It is not that lived experience doesn’t have value; indeed, it has tremendous value in that it provides a window into individuals’ perceptions of reality. However, perception can be wildly inaccurate and does not necessarily equate to reality. If that Nobel Prizewinning scientist vehemently disputed global warming because his personal experience was that temperatures have not changed over time, yet he provided no atmospheric measurements or systematic tests of his claim, other scientists would rightly ignore his statements—at least as regards the question of climate change.

The limited utility of a person’s lived experience seems obvious in most scientific disciplines, such as in the study of rocks and wind patterns, but less so in psychology. After all, psychological science involves the study of people—and they think and have feelings about their lived experiences. However, what is the case in other scientific disciplines is also the case in psychological science: lived experience does not provide a foolproof guide to objective reality.

To take an example from the behavioral sciences, consider the Cambridge-Somerville Youth Study.6 At-risk boys were mentored for five years, from the ages of 10 to 15. They participated in a host of programs, including tutoring, sports, and community groups, and were given medical and psychiatric care. Decades later, most of those who participated claimed the program had been helpful. Put differently, their lived experience was that the program had a positive impact on their life. However, these boys were not any better in important outcomes relative to a matched group of at-risk boys who were not provided mentoring or extra support. In fact, boys in the program ended up more likely to engage in serious street crimes and, on average, they died at a younger age. The critical point is that giving epistemic authority to lived experience would have resulted in making inaccurate conclusions. And the Cambridge-Somerville Youth Study is not an isolated example. There are many programs that people feel are effective, but when tested systematically turn out to be ineffective, at best. These include programs like DARE,7 school-wide mental health interventions,8 and—of course—many diversity training programs.9

DEI over-reach in behavioral science is intimately related to a failure within the scientific community to adhere to basic principles of science and appreciate important findings from the behavioral science literature.

Indeed, when it comes to concerns related to DEI, the scientific tenet of prioritizing testable truth claims over lived experience has often fallen to the wayside. Members of specific identity groups are given privilege to speak about things that cannot be contested by those from other groups. In other words, in direct contradiction of the scientific method, some people are granted epistemic authority based solely on their lived experience.10

Consider gender dysphoria. In the past decade, there has been a drastic increase in the number of people, particularly children and adolescents, identifying as transgender. Those who express the desire to biologically transition often describe their lived experience as feeling “born in the wrong body,” and express confidence that transition will dramatically improve their lives. We argue while these feelings must be acknowledged, they should not be taken as objective truth; instead, such feelings should be weighed against objective data on life outcomes of others who have considered gender transition and/or transitioned. And those data, while limited, suggest that many individuals who identify as transgender during childhood, but who do not medically transition, eventually identify again with the gender associated with their birth sex.11, 12 Although these are small, imperfect studies, they underscore that medical transition is not always the best option.

Caution in automatically acceding to a client’s preference to transition is particularly important among minors. Few parents and health care professionals would affirm a severely underweight 13-year-old’s claim that, based on their lived experience, they are fat and will only be happy if they lose weight. Nevertheless, many psychologists and psychiatrists make a similar mistake when they affirm a transgender child’s desire to transition without carefully weighing the risks. In one study, 65 percent of people who had detransitioned reported that their clinician, who often was a psychologist, “did not evaluate whether their desire to transition was secondary to trauma or a mental health condition.”13 The concern, in other words, is that lived experience is being given too much weight. How patients feel is important, but their feelings should be only one factor among many, especially if they are minors. Mental health professionals should know this, and parents should be able to trust them to act accordingly.

Principle #2: Measure Well

Another basic principle of behavioral science is that anything being measured must be measured reliably and validly. Reliability refers to the consistency of measurement; validity refers to whether the instrument is truly measuring what it claims to measure. For example, a triple beam balance is reliable if it yields the same value when repeatedly measuring the same object. The balance is valid if it yields a value of exactly 1 kg when measuring the reference kilogram (i.e., the International Prototype of the Kilogram), a platinum-iridium cylinder housed in a French vault under standardized conditions.

Behavioral scientists’ understanding of any concept is constrained by the degree to which they can measure it consistently and accurately. Thus, to make a claim about a concept, whether about its prevalence in a population or its relation to another concept, scientists must first demonstrate both the reliability and the validity of the measure being used. For some measures of human behavior, such as time spent listening to podcasts or number of steps taken each day, achieving good reliability and validity is reasonably straightforward. Things are generally more challenging for the self-report measures that psychologists often use.

Nevertheless, good measurement can sometimes be achieved, and the study of personality provides a nice model. In psychology, there are several excellent measures of the Big Five personality factors (Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness).14 Individuals’ responses are highly reliable: people who rate themselves as highly extraverted as young adults rate themselves similarly years later. Moreover, personality assessments are valid: individuals’ responses correlate with their actual day-to-day behaviors, as reported by themselves and as observed by others.15 In other words, people who rate themselves as high (versus low) in extroversion on psychological questionnaires, for example, really do spend more time socializing.

However, not all psychological measures turn out to have solid reliability and validity. These include the popular Myers Briggs Type Indicator personality test and projective tests such as the Rorschach. Unfortunately, in the quest to support DEI, some concepts that fail the requirements of good measurement are used widely and without reservation. The concept of microaggressions, for example, has gained enormous traction despite its having fundamental measurement issues.

“Microaggressions” were brought to psychologists’ attention by Derald Wing Sue and colleagues.16 Originally described as “brief and commonplace daily verbal, behavioral, or environmental indignities, whether intentional or unintentional, that communicate hostile, derogatory, or negative racial slights and insults toward people of color” (p. 271),17 the concept has since expanded in use to describe brief, verbal or nonverbal, indignities directed toward a different “other.”18, 19

In 2017, Scott Lilienfeld discussed how the failure to adhere to the principles of good measurement has rendered the concept of microaggression “wide open,” without any clear anchors to reality.20 The primary weakness for establishing validity, that is, for establishing evidence of truly measuring what scientists claim to be measuring, is that “microaggression” is defined in the eye of the beholder.21 Thus, any person at any point can say they have been “microaggressed” against, and no one can test, let alone refute, the claim because it is defined solely by the claimant’s subjective appraisal—their lived experience.

As Scott Lilienfeld explained, the end result is that essentially anything, including opposing behaviors (such as calling on a student in class or not calling on a student in class) can be labeled a microaggression. A question such as, “Do you feel like you belong here?” could be perceived as a microaggression by one person but not by someone else; in fact, even the same person can perceive the same comment differently depending on their mood or on who asks the question (which would indicate poor reliability). Our criticism of microaggressions, then, spans concerns related to both weak measurement and an undue reliance on lived experience.

Another of psychology’s most famous recent topics is the Implicit Association Test (IAT), which supposedly reveals implicit, or subconscious, bias. The IAT measures an individual’s reaction times when asked to classify pictures or text spatially. A video22 may be the best way to appreciate what is happening in the IAT, but the basic idea is that if a person more quickly pairs pictures of a Black person than those of a White person with a negative word (for example, “lazy” or “stupid”) then they have demonstrated their unconscious bias against Black people. The IAT was introduced by Anthony Greenwald and colleagues in the 1990s.23 They announced that their newly developed instrument, the race IAT, measures unconscious racial prejudice or bias and that 90 to 95 percent of Americans, including many racial minorities, demonstrated such bias. Since then, these scholars and their collaborators (plus others such as DEI administrators) have enjoyed tremendous success advancing the claim that the race IAT reveals pervasive unconscious bias that contributes to society-wide discrimination.

Despite its immense influence, the IAT is a flawed measure. Regarding reliability, the correlation between a person’s response when taking the test at two different times hovers around 0.5.24 This is well below conventionally acceptable levels in psychology, and far below the test-retest reliabilities for accepted personality and cognitive ability measures, which can reach around .8, even when a person takes the tests decades later.25, 26

The best path forward is to get back to the basics: understand the serious limitations of lived experience, focus on quality measurement, and be mindful of the distinction between correlation and causation.

As for the IAT’s validity, nobody has convincingly shown that patterns of reaction times actually reflect “unconscious bias” (or “implicit prejudice”) as opposed to cultural stereotypes.27 Moreover, in systematic syntheses of published studies, the association between scores on the race IAT and observations or measurements of real-world biased behavior is inconsistent and weak.28, 29 In other words, scores on the IAT do not meaningfully correlate with other ways of measuring racial bias or real life manifestations of it.

Principle #3: Distinguish Appropriately Between Correlation and Causation

“Correlation does not equal causation” is another basic principle of behavioral science (indeed, all science). Although human brains seem built to readily notice and even anticipate causal connections, a valid claim that “X” has a causal effect on “Y” needs to meet three criteria, and a correlation between X and Y is only the first. The second criterion is that X precedes Y in time. The third and final criterion is the link between X and Y is not actually due to some other variable that influences both X and Y (“confounders”). To test this final point, researchers typically need to show that when X is manipulated in an experiment, Y also changes.

Imagine, for instance, that a researcher asks students about their caffeine intake and sleep schedule, and upon analyzing the data finds that students’ caffeine consumption is negatively correlated with how much they sleep—those who report consuming more caffeine tend to report sleeping less. This is what many psychologists call correlational research (or associational or observational research). These correlational data could mean that caffeine consumption reduces sleep time, but the data could also mean that a lack of sleep causes an increase in caffeine consumption, or that working long hours causes both a decrease in sleep and an increase in caffeine. To make the case that caffeine causes poor sleep, the researcher must impose, by random assignment, different amounts of caffeine on students to determine how sleep is affected by varying doses. That is, the researcher would conduct a true experiment.

Distinguishing between correlation and causation is easier said in the abstract than practiced in reality, even for psychological scientists who are specifically trained to make the distinction.30 Part of the difficulty is that in behavioral science, many variables that are generally thought of as causal cannot be manipulated for ethical or practical reasons. For example, researchers cannot impose neglect (or abuse, corporal punishment, parental divorce, etc.) on some children and not others to study how children are affected by the experience. Still, absent experiments, psychologists bear the responsibility of providing converging, independent lines of evidence that indicate causality before they draw a causal conclusion. Indeed, scientists did this when it came to claiming that smoking causes cancer: they amassed evidence from national datasets with controls, discordant twin designs, correlational studies of exposure to second-hand smoke, non-human experiments, and so on—everything but experiments on humans—before coming to a consensus view that smoking causes cancer in humans. Our point is that investigating causal claims without true experiments is possible, but extremely difficult and time consuming.

That said, the conflation of correlation with causation seems especially prevalent when it comes to DEI issues. In the context of microaggressions, for example, a Google search quickly reveals many scholars claiming that microaggressions cause psychological harm. Lilienfeld has been a rare voice suggesting that it is dangerous to claim that microaggressions cause mental health issues when there are no experimental data to support such a claim. Moreover, there is a confounding variable that predicts both (1) perceiving oneself as having been “microaggressed” against and (2) struggling with one’s mental health—namely, the well-documented personality trait of neuroticism. In other words, individuals who are prone to experience negative emotions (those who are high in neuroticism) often perceive that more people try to inflict harm on them than actually do, and these same individuals also struggle with mental health.

Assuming we were able to develop a workable definition of “microaggressions,” what would a true experiment look like? An experiment would require that participants be exposed to microaggressions (or not), and then be measured or observed for indications of psychological harm. There are valid ethical concerns for such a study, but we believe it can be done. There is a lengthy precedent in psychological research where temporary discomfort can be inflicted with appropriate safeguards. For instance, a procedure called the “trier social stress test” (TSST) is widely used, where participants make a speech with little preparation time in front of judges who purposefully avoid any non-verbal reaction. This is followed by a mental arithmetic task.31 If the TSST is acceptable for use in research, then it should also be acceptable to expose study participants to subtle slights.

This fallacy of equating correlation with causation also arises in the context of gender transitioning and suicide. To make the point that not being able to transition is deeply damaging, transgender individuals, and sometimes their professional supporters, may ask parents something such as, “would you rather have a dead daughter or a living son?” One logical flaw here is in assuming that because gender distress is associated with suicidal ideation, then the gender distress must be causing the suicidal ideation. However, other psychological concerns, such as depression, anxiety, trauma, eating disorders, ADHD, and autism, could be causing both the gender distress and the suicidal ideation—another case of confounding variables. Indeed, these disorders occur more frequently in individuals who identify as transgender. Thus, it is quite possible that someone may suffer from depression, and this simultaneously raises their likelihood of identifying as transgender and of expressing suicidal ideation.

It is not possible (nor would it be ethical if possible) to impose gender identity concerns on some children and not others to study the effect of gender dysphoria on suicidality. However, at this point, the correlational research that does exist has not offered compelling evidence that gender dysphoria causes increased suicidality. Studies have rarely attempted to rule out third variables, such as other mental health diagnoses. The few studies that have tried to control for other variables have yielded mixed results.32, 33 Until researchers have consistently isolated gender dysphoria as playing an independent role in suicidality, they should not claim that gender dysphoria increases suicide risk.

Over three decades ago, the psychologist David Lykken wrote, “Psychology isn’t doing very well as a scientific discipline and something seems to be wrong somewhere” (p. 3).34 Sadly, psychology continues to falter; in fact, we think it has gotten worse. The emotional and moral pull of DEI concerns are understandable but they may have short-circuited critical thinking about the limitations of lived experience, the requirement of using only reliable and valid measurement instruments, and the need to meet strict criteria before claiming that one variable has a causal influence on another variable.

DEI Concepts Contradict Known Findings about Human Cognition

The empirical bases for some DEI concepts contradict social scientific principles. Additionally, certain DEI ideas run counter to important findings about human nature that scientists have established by following the required scientific principles. We discuss three examples below.

Out-Group Antipathy

Humans are tribal by nature. We have a long history of living in stable groups and competing against other groups. Thus, it’s no surprise that one of social psychology’s most robust findings is that in-group preferences are powerful and easy to evoke. For example, in studies where psychologists create in-groups and out-groups using arbitrary criteria such as shirt color, adults and children alike have a large preference for their group members.35, 36 Even infants prefer those who are similar to themselves37 and respond preferentially to those who punish dissimilar others.38

Constructive disagreement about ideas should be encouraged rather than leveraged as an excuse to silence those who may see the world differently.

DEI, although generally well-intentioned, often overlooks this tribal aspect of our psychology. In particular, in the quest to confront the historical mistreatment of certain identity groups, it often instigates zero-sum thinking (i.e., that one group owes a debt to another; that one group cannot gain unless another loses). This type of thinking will exacerbate, rather than mitigate, animosity. A more fruitful approach would emphasize individual characteristics over group identity, and the common benefits that can arise when all individuals are treated fairly.

Expectancies

When people expect to feel a certain way, they are more likely to experience that feeling.39, 40 Thus, when someone, especially an impressionable teenager or young adult, is told that they are a victim, the statement (even if true) is not merely a neutral descriptor. It can also set up the expectation of victimhood with the downstream consequence of making one feel themselves to be even more of a victim. DEI microaggression workshops may do exactly this—they prime individuals to perceive hostility and negative intent in ambiguous words and actions.41 The same logic applies to more pronounced forms of bigotry. For instance, when Robin DiAngelo describes “uniquely anti-black sentiment integral to white identity” (p. 95),42 the suggestion that White people are all anti-Black might have the effect of exacerbating both actual and perceived racism. Of course, we need to deal honestly with any and all racism when it does exist, but it is also important to understand potential costs of exaggerating such claims. Expectancy effects might interact with the “virtuous victim effect,” wherein individuals perceive victims as being more moral than non-victims.43, 44 Thus, there can be a social value gained simply in presenting oneself as a victim.

Cognitive Biases

Cognitive biases are one of the most important and well-replicated discoveries of the behavioral sciences. It is therefore troubling that, in the discussion of DEI topics, psychologists often fall victim to those very biases.

A striking example is the American Psychological Association’s (APA) statement shortly after the death of George Floyd, which provides a textbook illustration of the availability bias, the tendency to overvalue evidence that easily comes to mind. The APA, the largest psychological organization in the world, asserted after Floyd’s death that “The deaths of innocent black people targeted specifically because of their race—often by police officers—are both deeply shocking and shockingly routine.”45 How “shockingly routine” are they? According to the Washington Post database of police killings, in 2020 there were 248 Black people killed by police. By comparison, over 6,500 Black people were killed in traffic fatalities that year—a 26-fold difference.46 Also, some portion of those 248 victims were not innocent—given that 216 were armed, some killings would probably have been an appropriate use of force by the police to defend themselves or others. Some portion was also not killed specifically because of their race. So why would the APA describe a relatively rare event as “shockingly routine”? This statement came in the aftermath of the widely publicized police killings of Floyd and those of Ahmaud Arbery and Breonna Taylor. In other words, these rare events were seen as common likely because widespread media coverage made them readily available in our minds.

Unfortunately, the APA also recently fell prey to another well-known bias, the base rate fallacy, where relevant population sizes are ignored. In this case, the APA described new research that found “The typical woman was considered to be much more similar to a typical White woman than a typical Black woman.”47 Although not stated explicitly, the implication seems to be that, absent racism, the typical woman would be roughly midway between typical White woman and typical Black woman. That is an illogical conclusion given base rates. In the U.S., White people outnumber Black people by roughly 5 to 1; hence the typical woman should be perceived as more similar to a typical White woman than to a typical Black woman.

What Happened? Some Possible Causes

At this stage, we expect that many readers may be wondering how it can be that social scientists regularly violate basic scientific principles—principles that are so fundamental that these same social scientists routinely teach them in introductory courses. One possible reason is myside bias, wherein individuals process information in a way that favors their own “team.” For example, in the case of the race Implicit Association Test, proponents of the IAT might more heavily scrutinize the methodology of studies that yield negative results compared to those that have yielded their desired results. Similarly, although lived experience is a limited kind of evidence, it certainly is a source of evidence, and thus scholars may elevate its importance and overlook its limitations when doing so bolsters their personal views.

A related challenge facing behavioral scientists is that cognitive biases are universal and ubiquitous—everyone, including professional scientists, is susceptible.48 In fact, one might say that the scientific method, including the three principles we emphasize here, is an algorithm (i.e., a set of rules and processes) designed to overcome our eternally pervasive cognitive biases.

A third challenge confronting behavioral scientists is the current state of the broader scientific community. Scientific inquiry works best when practiced in a community adhering to a suite of norms, including organized skepticism, that incentivize individuals to call out each other’s poor practices.49, 50 In other words, in a healthy scientific community, if a claim becomes widely adopted without sufficient evidence, or if a basic principle is neglected, a maverick scientist would be rewarded for sounding the alarm by gaining respect and opportunities. Unfortunately, the scientific community does not act this way with respect to DEI issues, perhaps because the issues touch widely held personal values (e.g., about equality between different groups of people). If different scientists held different values, there would probably be more healthy skepticism of DEI topics. However, there is little ideological diversity within the academy. In areas such as psychology, for example, liberal-leaning scholars outnumber conservative-leaning scholars by at least 8 to 1, and in some disciplines the ratio is 20 to 1 or even more.51, 52 A related concern is that these values are more than just personal views. They often seem to function as sacred values, non-negotiable principles that cannot be compromised and only questioned at risk to one’s status within the community.

From this perspective,53 it is easy to see how those who question DEI may well face moral outrage, even if (or maybe especially if) their criticisms are well-founded. The fact that this outrage sometimes translates into public cancellations is extremely disheartening. Yet there are likely even more de facto cancellations than it seems. Someone can be cancelled directly or indirectly. Indirect cancellations can take the form of contract nonrenewal, pressure to resign, or having one’s employer dig for another offense to use as the stated grounds of forcing someone out of their job. This latter strategy is a very subtle, yet no less insidious, method of cancellation. As an analogy, it is like a police officer following someone with an out-of-state license plate and then pulling the car over when they fail to use a turn signal. An offense was committed, but the only reason the offense was observed in the first place is because the officer was looking for a reason to make the stop and therefore artificially enhanced the time window in which the driver was being scrutinized. The stated reason for the stop is failure to signal; the real reason is the driver is from out of town. Whether direct or indirect, the key to a cancellation is that holding the same job becomes untenable after failing to toe the party line on DEI topics.

It is against this backdrop that DEI scholarship is conducted. Academics fear punishment (often subtle) for challenging DEI research. Ideas that cannot be freely challenged are unfalsifiable. Those ideas will likely gain popularity because the marketplace of ideas becomes the monopoly of a single idea. An illusory consensus can emerge about a complex area for which reasonable, informed, and qualified individuals have highly differing views. An echo chamber created by forced consensus is the breeding ground for bad science.

How to Get Behavioral Science Back on Track

We are not the first ones to express concern about the quality of science in our discipline.54, 55 However, to our knowledge, we are the first to discuss how DEI over-reach goes hand-in-hand with the failure to engage in good science. Nonetheless, this doesn’t mean it can’t be fixed. We offer a few suggestions for improvement.

First, disagreement should be normalized. Advisors should model disagreement by presenting an idea and explicitly asking their lab members to talk about its weaknesses. We need to develop a culture where challenging others’ ideas is viewed as an integral (and even enjoyable) part of the scientific process, and not an ad hominem attack.

Second, truth seeking must be re-established as the fundamental goal of behavioral science. Unfortunately, many academics in behavioral science seem now to be more interested in advocacy than science. Of course, as a general principle, faculty and students should not be restricted from engaging in advocacy. However, this advocacy should not mingle with their academic work; it must occur on their own time. The tension between advocacy and truth seeking is that advocates, by definition, have an a priori position and are tasked with convincing others to accept and then act upon that belief. Truth seekers must be open to changing their opinion whenever new evidence or better analyses demand it.

To that end, we need to resurrect guardrails that hold students accountable for demonstrating mastery of important scientific concepts, including those described above, before receiving a PhD. Enforcing high standards may sound obvious, but actually failing students who do not meet those standards is an exclusionary practice that might be met with resistance.

This article appeared in Skeptic magazine 29.2
Buy print edition
Buy digital edition
Subscribe to print edition
Subscribe to digital edition
Download our app

Another intriguing solution is to conduct “adversarial collaborations,” wherein scholars who disagree work together on a joint project.56 Adversarial collaborators explicitly spell out their competing hypotheses and together develop a method for answering a particular question, including the measures and planned analyses. Stephen Ceci, Shulamit Kahn, and Wendy Williams,57 for example, engaged in an adversarial collaboration that synthesized evidence regarding gender bias in six areas of academic science, including hiring, grant funding, and teacher ratings. They found evidence for gender bias in some areas but not others, a finding that should prove valuable in decisions about where to allocate resources.

In conclusion, we suggest that DEI over-reach in behavioral science is intimately related to a failure within the scientific community to adhere to basic principles of science and appreciate important findings from the behavioral science literature. The best path forward is to get back to the basics: understand the serious limitations of lived experience, focus on quality measurement, and be mindful of the distinction between correlation and causation. We need to remember that the goal of science is to discover truth. This requires putting ideology and advocacy aside while in the lab or classroom. Constructive disagreement about ideas should be encouraged rather than leveraged as an excuse to silence those who may see the world differently. The scientific method requires us to stay humble and accept that we just might be wrong. That principle applies to all scientists, including the three authors of this article. To that end, readers who disagree with any of our points should let us know! Maybe we can sort out our differences—and find common ground— through an adversarial collaboration.

The views presented in this article are solely those of the authors. They do not represent the views of any author’s employer or affiliation.

About the Author

April Bleske-Rechek is a Professor of Psychology at the University of Wisconsin-Eau Claire. Her teaching and research efforts focus on scientific reasoning and individual and group differences in cognitive abilities, personality traits, and relationship attitudes.

Michael H. Bernstein is an experimental psychologist and an Assistant Professor at Brown University. His research focuses on the overlap between cognitive science and medicine. He is co-editor of The Nocebo Effect: When Words Make You Sick.

Robert O. Deaner is a Professor of Psychology at Grand Valley State University. He teaches courses on research methods, sex differences, and evolutionary psychology. His research addresses sex differences in competitiveness.

References
  1. Frisby, C.L., Redding, R.E., O’Donohue, W.T., & Lilienfeld, S.O. (2023). Ideological and Political Bias in Psychology. Springer Nature.
  2. https://bit.ly/4aJLRyO
  3. Merton, R.K. (1993). The Sociology of Science: Theoretical and Empirical Investigations. University of Chicago Press.
  4. Rauch, J. (2013). Kindly Inquisitors: The New Attacks on Free Thought. University of Chicago Press.
  5. Rauch, J. (2021). The Constitution of Knowledge: A Defense of Truth. Brookings Institution Press.
  6. https://bit.ly/3xATvNI
  7. https://bit.ly/4cTS4Kq
  8. https://bit.ly/4cXcRNe
  9. https://bit.ly/3Q15SZU
  10. https://bit.ly/3xCzeY8
  11. https://bit.ly/43W5bGW
  12. https://bit.ly/3TUw0GR
  13. https://bit.ly/4401VKr
  14. https://bit.ly/3Ufx4q1
  15. Funder, D. C. (2019). The Personality Puzzle (8th ed.). W.W. Norton & Company.
  16. https://bit.ly/3UhIOsn
  17. Ibid.
  18. https://bit.ly/3W0liBc
  19. https://bit.ly/3VShodH
  20. Ibid.
  21. https://bit.ly/3UhIOsn
  22. https://bit.ly/49vFle5
  23. https://bit.ly/3JmZxUw
  24. https://bit.ly/3Jifb3O
  25. https://bit.ly/3Q37UZc
  26. https://bit.ly/3Q0Oe8h
  27. https://bit.ly/49zSTFk
  28. https://bit.ly/3xrWU15
  29. https://bit.ly/49QWBux
  30. Bleske-Rechek, A., Gunseor, M.M., & Maly, J.R. (2018). Does the Language Fit the Evidence? Unwarranted Causal Language in Psychological Scientists’ Scholarly Work. The Behavior Therapist, 41(8), 341–352.
  31. https://bit.ly/49DQZmW
  32. https://bit.ly/49zKdif
  33. https://bit.ly/49JeECQ
  34. Lykken, D.T. (1991). What’s Wrong With Psychology Anyway? In D. Cicchetti & W.M. Grove (Eds.), Thinking Clearly About Psychology: Essays in Honor of Paul E. Meehl. University of Minnesota Press.
  35. Tajfel, H. (2020). Experiments in Intergroup Discrimination. Scientific American, 223, 96–102.
  36. https://bit.ly/3xC9on5
  37. https://bit.ly/4aO5dTe
  38. https://bit.ly/4aSLamR
  39. https://bit.ly/3Q2m9gO
  40. Bernstein, M., Blease, C., Locher, C., & Brown, W. (2024). The Nocebo Effect: When Words Make You Sick. Mayo Clinic Press.
  41. https://bit.ly/4aQmv2e
  42. DiAngelo, R. (2018). White Fragility: Why It’s So Hard for White People to Talk About Racism. Beacon Press.
  43. https://bit.ly/4awG3sR
  44. https://bit.ly/4cSOEYn
  45. https://bit.ly/43XhN0k
  46. https://bit.ly/3UfKH8L
  47. https://bit.ly/43ZM1zH
  48. Stanovich, K. E. (2021). The Bias That Divides Us: The Science and Politics of Myside Thinking. The MIT Press.
  49. https://bit.ly/4aJLRyO
  50. Ritchie, S. (2020). Science Fictions: How Fraud, Bias, Negligence, and Hype Undermine the Search for Truth. Metropolitan Books.
  51. https://bit.ly/43XRkzI
  52. https://bit.ly/3TXsw6n
  53. https://bit.ly/3TXsxar
  54. Lykken, D.T. (1991). What’s Wrong With Psychology Anyway? In D. Cicchetti & W.M. Grove (Eds.), Thinking Clearly About Psychology: Essays in Honor of Paul E. Meehl. University of Minnesota Press.
  55. https://bit.ly/4aybGSy
  56. Clark, C.J., & Tetlock, P.E. (2023). Adversarial Collaboration: The Next Science Reform. In C.L. Frisby, R.E. Redding, W. T. Donohue, & S.O. Lilienfeld (Eds.), Ideological and Political Bias in Psychology (pp. 905–927). Springer.
  57. https://bit.ly/3vQQ5FW
Categories: Critical Thinking, Skeptic

Pages

Subscribe to The Jefferson Center  aggregator