You are here

News Feeds

Strange binary star system has three Earth-sized exoplanets

New Scientist Feed - Thu, 09/19/2024 - 1:00am
Exoplanets in binary star systems usually orbit both stars, but astronomers have now spotted three planets orbiting one or the other star in a pair
Categories: Science

Actually, Ceres Might Have Formed in the Asteroid Belt After All

Universe Today Feed - Wed, 09/18/2024 - 7:28pm

Dwarf planet Ceres is the largest planetary body in the Asteroid Belt. For a long time, scientists thought it was born in the outer solar system and then migrated to its present position. Some evidence for that origin lies in extensive surface deposits of ammonium-rich materials on the Cerean surface.

Some of those bright, white and whitish-yellow deposits are found in impact craters on Ceres. Researchers suspect they are the remnants of a brine that seeped to the surface from a liquid layer between the mantle and crust. When impacts whacked the planet, they altered its surface. They also dug up and splattered material from the brine layer. Images and observational data from NASA’s Dawn mission of an impact region called Consus Crater also show bright yellowish-white deposits. Now, thanks to a deeper analysis of Dawn data, their presence could point to Ceres’s origin in the Asteroid Belt.

NASA’s Dawn spacecraft captured this approximately true-color image of Ceres in 2015 as it approached the dwarf planet. Dawn showed that some polar craters on Ceres hold ancient ice, but new research suggests the ice is much younger. Image Credit: NASA / JPL-Caltech / UCLA / MPS / DLR / IDA / Justin Cowart Peeping Inside Ceres

Ceres is classified as a dwarf planet and its rocky component is very similar to that of carbonaceous chondrite asteroids. At least a quarter of its mass is water ice. The surface is pretty complex, consisting of carbon-rich rocks and something called ammoniated phyllosilicates. Those are minerals that include such familiar substances as talc and mica. There’s also evidence of water ice in various surface regions.

This dwarf planet is an active world, with most of its activity driven by cryovolcanism. The surface has been gardened by impacts. The thick outer crust lies over a salt-rich liquid (that brine layer) and a muddy mantle. There’s a lot of evidence to suggest that the concentration of ammonium is greater in deeper layers of the crust. The few places on the surface of Ceres where those obvious yellowish-bright patches show up are in and near Consus Crater and also within other deep craters.

Planetary scientists have long wondered about exactly where Ceres formed. If it formed in the outer Solar system, then it must have migrated into position billions of years ago. If it formed in place, then that raises the question of how it could have become enriched with the icy ammonium-rich materials.

A cutaway showing the surface and interior of dwarf planet Ceres. Thick outer crust (ice, salts, hydrated minerals) Salt-rich liquid (brine), and rock “Mantle” (hydrated rock). Courtesy: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Clues to Ceres’s Birthplace

Why the differing suggestions about where Ceres formed? Let’s look more deeply at those ammonium-rich deposits for an answer. They tend to form in very cold environments. That’s why people assumed that Ceres formed in the outer Solar System. That’s where frozen ammonium ice is most stable. In warmer environments (such as closer to the Sun), it evaporates. So, it makes sense to think that Ceres formed our where it was colder and then somehow migrated to the Asteroid Belt.

However, if the ice was part of a rocky planetesimal, the location might not matter so much. Inside the rock, the ice would be insulated from solar heating. Such world-forming materials exist closer to the Sun, and certainly out at the location of the Asteroid Belt. So, if they coalesced to form Ceres in situ, their encased ices would have contributed to the subsurface brine layer that today feeds the cryovolcanism. Impacts punching through the surface would release the brine, as well.

Connecting the Dots

A team led by Andres Nathues and Ranjan Sarkar (both Dawn mission scientists), zeroed in on materials sprayed across the surface in the area of Consus Crater. It lies in Ceres’s southern hemisphere and stretches across 64 kilometers (~39 miles). The crater walls are about 4.5 kilometers (~3 miles) high and parts of them are eroded. There’s a smaller crater inside on the eastern half of Consus. Its edges appear to be “painted” with speckles of bright yellowish material, which is also spattered out nearby.

Further analysis of the Dawn data ties the ammonium on the surface with the salty brine from Ceres’ interior. Cryovolcanic activity on this world brings the ammonium-rich brine up toward the Cerean surface. Once there, it seeps into the crust, according to Andreas Nathues, former lead investigator for the Dawn mission. “The minerals in Ceres’ crust possibly absorbed the ammonium over many billions of years like a kind of sponge,” said Nathues.

Nathues and others argue that the dwarf planet’s origin does not necessarily have to be in the outer Solar System simply based on the presence of those ammonium-rich deposits. As mentioned above, they could have been part of the planetesimals in the Asteroid Belt that coalesced to build Ceres. Once it formed, Ceres experienced impacts and cryovolcanism and those actions produced the surface deposits we see today.

Evidence from the Craters

Consus Crater itself was “dug out” between 400 and 500 million years ago by a huge impact. That event exposed material from the deep, particularly the ammonium-rich layers below Consus Crater. A later impact about 280 million years ago created the smaller crater inside. The yellowish-bright speckles to the east of the smaller crater are material ejected by the second event. If those materials always existed inside Ceres, then that supports the idea this dwarf planet formed where it is now, rather than out at the edge of the Solar System. That’s where the impacts become important, since that action exposed deeper layers, according to Dawn researcher Ranjan Sarkar.

“At 450 million years, Consus Crater is not particularly old by geological standards, but it is one of the oldest surviving structures on Ceres,” Sarkar said. “Due to its deep excavation, it gives us access to processes that took place in the interior of Ceres over many billions of years, and is thus a kind of window into the dwarf planet’s past.”

For More Information

Dwarf Planet Ceres: Origin in the Asteroid Belt?
Consus Crater on Ceres: Ammonium-enriched Brines Exchange with Phylosilicates?

The post Actually, Ceres Might Have Formed in the Asteroid Belt After All appeared first on Universe Today.

Categories: Science

Metal Part 3D Printed in Space for the First Time

Universe Today Feed - Wed, 09/18/2024 - 7:17pm

Additive manufacturing, also known as 3D printing, has had a profound impact on the way we do business. There is scarcely any industry that has not been affected by the adoption of this technology, and that includes spaceflight. Companies like SpaceX, Rocket Lab, Aerojet Rocketdyne, and Relativity Space have all turned to 3D printing to manufacture engines, components, and entire rockets. NASA has also 3D-printed an aluminum thrust chamber for a rocket engine and an aluminum rocket nozzle, while the ESA fashioned a 3D-printed steel floor prototype for a future Lunar Habitat.

Similarly, the ESA and NASA have been experimenting with 3D printing in space, known as in-space manufacturing (ISM). Recently, the ESA achieved a major milestone when their Metal 3D Printer aboard the International Space Station (ISS) produced the first metal part ever created in space. This technology is poised to revolutionize operations in Low-Earth Orbit (LEO) by ensuring that replacement parts can be manufactured in situ rather than relying on resupply missions. This process will reduce operational costs and enable long-duration missions to the Moon, Mars, and beyond!

The Metal 3D Printer is a technology demonstrator built by an industrial team led by Airbus Defence and Space (SAS) in partnership with the ESA’s Directorate of Human and Robotic Exploration. It was launched to the ISS in late January and installed in the European Drawer Rack aboard the ESA’s Columbus Laboratory Module by European astronaut Andreas Mogensen. The printer became operational by the following June, and the first 3D metal shape was produced by August. With the first metal component built, the ESA plans to create three more as part of the experiment.

These four samples will then be sent to Earth for quality analysis and testing. Two will be sent to the ESA’s European Space Research and Technology Centre (ESTEC) in the Netherlands, a third to the Technical University of Denmark (DTU), and the fourth to the ESA’s European Astronaut Centre (EAC) in Cologne, where it will be integrated into the LUNA facility—a lunar analog environment designed for astronaut training. The availability of ISM will significantly reduce the challenges of resupplying spacecraft as they travel to the Moon, Mars, and other locations in deep space.

For long-duration missions on the lunar surface, the ability to print machine parts and ship them directly from LEO will reduce the number of launches needed to sustain operations there. As for Mars, the ability to manufacture replacement parts, repair equipment, and construct specific tools on demand will ensure a measure of autonomy for mission crews and reduce their reliance on resupply missions sent from Earth. This is especially important given the limited launch windows to Mars (every 26 months) and the time it takes to make a one-way transit (6 to 9 months).

NASA is also pursuing an ISM project aboard the ISS with the help of its commercial partners through the Marshall Space Flight Center (MSFC), with additional support provided by the physics-based modeling group at NASA’s Ames Research Center. These efforts began in 2014 when NASA launched the first 3D printer (manufactured by Made In Space, Inc.) to the ISS. This technology demonstrator used the fused filament fabrication (FFF) process to create objects out of plastic and proved that 3D printing could work in a microgravity environment.

This was followed by the creation of the Additive Manufacturing Facility (AMF), which can print using a variety of materials. These devices allowed for the creation of the first 3D-printed tools in space, including a plastic wrench, a rachet wrench, and more. In 2019, NASA added the ReFabricator experiment to the ISS, which was developed by Tethers Unlimited to create 3D-printed parts using recycled plastic materials. However, the ESA’s technology demonstrator is the first to successfully print a metal component in microgravity conditions.

Artist’s impression of Artemis astronauts conducting science operations on the Moon. Credit: NASA

The experiments will not stop there. In 2021, NASA sent another 3D printer to the ISS, the Redwire Regolith Print (RRP), designed to fashion construction materials out of lunar regolith. They are also investigating how Moon rover wheels can be 3D-printed on the lunar surface and how Martian rocks and minerals could be used to manufacture whatever future missions will need in situ. In collaboration with the University of Texas at El Paso (UTEP) and Youngstown State University (YSU), NASA is also considering how batteries could be 3D printed using lunar or Martian resources.

The potential applications for this technology are almost limitless and are integral to all plans for human expansion beyond Low Earth Orbit (LEO).

Further Reading: ESA

The post Metal Part 3D Printed in Space for the First Time appeared first on Universe Today.

Categories: Science

NASA Watches a Peanut-Shaped Asteroid Drift Past Earth

Universe Today Feed - Wed, 09/18/2024 - 4:39pm

Peanuts! Get your peanuts here! The Solar System has been passing out peanuts lately in the form of two different oddly shaped asteroids that recently passed by Earth, and both look like over-sized peanuts. The latest peanut-shaped asteroid pass was on September 16, 2024, when the near-Earth asteroid 2024 ON came within 1 million kilometers (62,000 miles) of Earth (2.6 times the Earth-Moon distance). Radar imaging revealed the asteroid was peanut-shaped because it is actually a contact binary – which means it is made of two smaller objects touching each other. NASA says the two rounded lobes are separated by a pronounced neck, and one lobe about 50% larger than the other.

In total, 2024 ON measures about 350 meters (382 yards) long. The radar could resolve features down to about 3.75 meters across on the surface, including brighter boulders. NASA says about 14% of asteroids in this size range (larger than about 200 meters (660 feet)) are contact binaries.

It’s a bird, it’s a plane, it’s a… peanut? ?

This nutty asteroid is about as long as the Eiffel Tower is tall. It was imaged by our Goldstone radar as it safely passed Earth at a distance of 2.8M miles (4.6M km). https://t.co/66hy0ehsPe

(P.S. it's #NationalPeanutDay!) pic.twitter.com/WlxoIFx2IM

— NASA JPL (@NASAJPL) September 13, 2024

Just last month, on August 18-19, 2024, the other “peanut” passed by our planet. Asteroid 2024 JV33 appears to also be a contact binary with two rounded lobes, one lobe larger than the other, and is about 300 meters (980 feet) long, about as long as the Eiffel Tower. Imagery showed that asteroid 2024 JV33 rotates once every seven hours. It safely passed Earth a little further than 2024 ON, at a distance of 4.6 million km (2.8 million miles), about 12 times the distance between the Moon and Earth.

Both asteroids were captured in a series of radar images obtained by the Deep Space Network’s Goldstone Solar System Radar near Barstow, California. The principal technique for studying asteroids is radar – called planetary radar. While astronomers can study the Universe by capturing light from stars, planets, and galaxies, they can also study nearby objects by shining radio light on them and analyzing the signals that echo back. Planetary radar can reveal incredibly detailed information about our planetary neighbors.

“When astronomers are studying light that is being made by a star, or galaxy, they’re trying to figure out its properties,” said Patrick Taylor, radar division head for the National Radio Astronomy Observatory, in an interview I did with him earlier this year. “But with radar, we already know what the properties of the signals are, and we leverage that to figure out the properties of whatever we bounced the signals off of. That allows us to characterize planetary bodies – like their shape, speed, and trajectory. That’s especially important for hazardous objects that might stray too close to Earth.”

An animation of the radar images showing the rotation of asteroid 2024 ON. Credit: NASA/JPL.

2024 ON was discovered by the Asteroid Terrestrial-impact Last Alert System (ATLAS) on Mauna Loa in Hawaii on July 27. The asteroid was discovered by the Catalina Sky Survey in Tucson, Arizona, on May 4.

NASA labels objects larger than 492 feet that come within 4.6 million miles of Earth “potentially hazardous objects,” so scientists are monitoring 2024 JV33 for potential danger even though they don’t expect the asteroid to pose a threat in the future.

The post NASA Watches a Peanut-Shaped Asteroid Drift Past Earth appeared first on Universe Today.

Categories: Science

Did Mars Once Have a Third, Larger Moon?

Universe Today Feed - Wed, 09/18/2024 - 4:23pm

We are all familiar with our one Moon but other planets have different numbers of moons; Mercury has none, Jupiter has 95 and Mars has two. A new paper proposes that Mars may actually have had a third larger moon. Why? The red planet has a triaxial shape which means it bulges just like Earth does but along a third axis. The paper suggests a massive moon could have distorted Mars into this shape. 

Celestial bodies that orbit planets or dwarf planets are known as moons. They vary significantly in size from just a few kilometres to several thousand kilometres. Earth’s Moon (notice capital ‘M’) is the moon everyone is familiar with but there are many fascinating moons in the outer Solar System from the largest moon Ganymede to the icy ocean world Europa or Titan with its methane lakes. Even Mars has two moons; Phobos and Deimos.

Phobos and Deimos, photographed here by the Mars Reconnaissance Orbiter, are tiny, irregularly-shaped moons that are probably strays from the main asteroid belt. Credit: NASA – See more at: http://astrobob.areavoices.com/2013/07/05/rovers-capture-loony-moons-and-blue-sunsets-on-mars/#sthash.eMDpTVPT.dpuf

In a paper published by Michael Efroimsky from the US Naval Observatory in Washington the shape of Mars is explored with a view to assessing the liklihood of a third moon of Mars. Efroimsky explains that the triaxial nature of Mars is noticeable through the equatorial ellipticity which is produced by the Tharsis Rise. Another less noticeable bulge is located almost opposite to the Tharsis rise and is in the Syrtis Major Planum region.

Olympus Mons, Tharsis Bulge trio of volcanoes and Valles Marineris from ISRO’s Mars Orbiter Mission. Note the clouds and south polar ice cap. Credit: ISRO

The paper proposes the peculiar bulge shape of Mars has been caused by two different elements. The initial shape was caused by a massive moon in orbit around the young and pliable Mars. It was in a synchronous or captured orbit so the same face of Mars was always pointing toward the moon. Under the constant tug of gravity, a triaxial ellipsoid shape evolved. A triaxial ellipsoid is shaped like a rugby ball but the three axes are of different lengths. The longest axis was aligned to the Moon while the others were forged by other tidal effects. 

The second element of the development of the shape of Mars relates to the convection processes under its surface. After the triaxial ellipsoid shape developed, the tidally raised regions became more prone to uplift driven by convection, tectonic and volcanic activity. The activity slowly enhanced the triaxial ellipticity seen today. 

Efroimsky demonstrates that a moon of less than a third of the mass of the Moon, in a synchronous orbit around Mars was capable of creating the initial triaxiality (this is my new favourite word!) The research also put showed that the asymmetry of the equator was significant if the synchronous moon existed while Mars still have magma oceans, and was weaker if the moon showed up at the solidification stage.

In order for the second element to be evidenced, further research is required. However Efroimsky believes the tidal deformations could very easily oscillate and generate heat. A moon in an elliptical but synchronous orbit would appear to oscillate east/west around the same region of sky. This would enhance the tidal deformation and internal heating of the system giving credence to Efroimsky’s theory that Mars did indeed once have a third larger moon. 

Source : A synchronous moon as a possible cause of Mars’ initial triaxiality

The post Did Mars Once Have a Third, Larger Moon? appeared first on Universe Today.

Categories: Science

The Early Universe Had a Lot of Black Holes

Universe Today Feed - Wed, 09/18/2024 - 2:13pm

The Hubble Deep Field and its successor, the Hubble Ultra-Deep Field, showed us how vast our Universe is and how it teems with galaxies of all shapes and sizes. They focused on tiny patches of the sky that appeared to be empty and revealed the presence of countless galaxies. Now, astronomers are using the Hubble Ultra-Deep Field and follow-up images to reveal the presence of a large number of supermassive black holes in the early Universe.

This is a shocking result because, according to theory, these massive objects shouldn’t have been so plentiful billions of years ago.

The Hubble Ultra-Deep Field (HUDF) was released in 2004 and required almost one million seconds of exposure over 400 of the telescope’s orbits. Over the years, the same region has been imaged with other wavelengths and been updated and refined in other ways.

The Hubble has re-imaged the region multiple times, and astronomers have compared the new images to older images and identified more SMBHs from the Universe’s early times.

The results are in a paper titled “Glimmers in the Cosmic Dawn: A Census of the Youngest Supermassive Black Holes by Photometric Variability, ” which was published in The Astrophysical Journal Letters. Matthew Hayes, an associate professor in the Department of Astronomy at Stockholm University, Sweden, is the lead author.

Supermassive Black Holes (SMBHs) sit in the center of large galaxies like ours. While the hole itself isn’t visible, material being drawn into the hole collects in an accretion disk. As that material heats, it gives off light as an active galactic nucleus (AGN). Since black holes feed sporadically, only a portion of them were visible in the original HUDF. By re-imaging the same field at different times, the Hubble captured additional SMBHs that weren’t originally visible.

Our understanding of the ancient Universe and how it and its galaxies evolved depends on several factors. One of them is the requirement for an accurate idea of the number of AGN. AGN can be difficult to spot, and this method overcomes some of the obstacles.

AGN can emit X-ray, radio, and other emissions, but they don’t always stand out. “The challenge to this field comes from the fact that identifying AGN at the luminosity regimes of typical galaxies is observationally difficult,” the authors write. “This leads to SMBHs probably being undercounted, with potentially large numbers going unnoticed among the ostensibly star-forming galaxy population at high-z.”

The authors’ photometric variability method circumvents that. Since AGN accrete material at variable rates, observing changes in output from AGN is a better method of determining how many there are. “Here, we argue that the photometric variability that results from changes in the mass accretion rate of SMBHs can provide a completely independent and complementary probe of AGN,” Hayes and his co-authors write. “Monitoring for variability selects AGN from imaging data directly by phenomena related to the SMBH, without any biases of photometric preselection (color, luminosity, compactness, etc).”

This figure from the research article shows how effective photometric variability can be at detecting SMBH. It shows the photometric variability of two objects found in the field: 1051264 at z = 2 (upper panels) and 1052126 at z = 3.2. Image Credit: Hayes et al. 2024.

The new paper presents preliminary results and reports the detection of eight interesting targets that display variability. Three of the eight are probably supernovae, two are clear AGN at about z = 2–3, and three more are likely AGN at redshifts greater than 6.

These findings are significant because they impact our understanding of black holes, how they form, and their place in the history of the Universe.

Astronomers understand how stellar-mass black holes form. They also believe that supermassive black holes grow so massive through mergers with other black holes. They’re even making progress in finding the in-between black holes called intermediate-mass black holes (IMBHs).

Since astronomers think that SMBHs grow through mergers, there should be more of them in the modern Universe and comparatively few, if any, in the ancient Universe. There simply hadn’t been enough time for enough mergers to take place to create SMBHs. That’s why there are alternate theories to explain black holes in the early Universe.

Astronomers theorize that a different type of star existed in the early universe. These massive, pristine stars could only form in the conditions that dominated the early Universe. They could’ve collapsed and become massive black holes.

Another theory suggests that massive gas clouds in the early Universe could have collapsed directly into black holes. Yet another theory suggests that so-called ‘primordial black holes’ could have formed in the first seconds after the Big Bang through purely speculative mechanisms.

The Hubble Ultra Deep Field with annotation showing the location of a supermassive black hole. Image Credit: Hayes et al. 2024.

The new observations should help clarify some of these ideas.

“The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said study lead author Hayes. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”

“These sources provide a first measure of nSMBH in the reionization epoch by photometric variability,” the authors explain in their paper. They say the sources identified in their work indicate the largest black hole population ever reported for these redshifts. “This SMBH abundance is also strikingly similar to estimates of nSMBH in the local Universe,” the authors write.

Some theoretical models suggest that there were large numbers of AGN in the reionization epoch. The JWST shows us that there seem to be more SMBHs and AGN than astronomers thought. By finding more SMBHs and AGN, this research is adding to our understanding of black holes and the evolution of the Universe.

But there’s still more work to be done. The researchers think that a larger sample of AGN at high redshifts is needed to reduce uncertainties and strengthen their results, and the JWST can help. “JWST is required to push to detection of fainter AGN via variability,” the authors explain, adding that it would take years of monitoring for the space telescope to do so.

This work also underlines the HST’s ongoing contribution to astronomy. It may not be as powerful as the JWST, but it has the benefit of many years of observations already under its belt and keeps proving its worth as a powerful observatory in its own right.

“In contrast, HST’s legacy of deep NIR imaging already stretches back about 15 yr, providing an excellent baseline for monitoring.”

The post The Early Universe Had a Lot of Black Holes appeared first on Universe Today.

Categories: Science

Bird flu virus that infected a person in Missouri had a rare mutation

New Scientist Feed - Wed, 09/18/2024 - 2:01pm
Genetic analysis of a bird flu virus detected in a person in Missouri who didn’t previously have contact with animals offers more details on the case, but experts say there isn’t substantial evidence to suggest human-to-human transmission is happening
Categories: Science

Light has been seen leaving an atom cloud before it entered

New Scientist Feed - Wed, 09/18/2024 - 12:23pm
Particles of light can spend "negative time" passing through a cloud of extremely cold atoms – without breaking the laws of physics
Categories: Science

SETI Scientists Scan TRAPPIST-1 for Technosignatures

Universe Today Feed - Wed, 09/18/2024 - 11:45am

If you are going to look for intelligent life beyond Earth, there are few better candidates than the TRAPPIST-1 star system. It isn’t a perfect choice. Red dwarf stars like TRAPPIST-1 are notorious for emitting flares and hard X-rays in their youth, but the system is just 40 light-years away and has seven Earth-sized worlds. Three of them are in the potentially habitable zone of the star. They are clustered closely enough to experience tidal forces and thus be geologically active. If intelligent life arises easily in the cosmos, then there’s a good chance it exists in the TRAPPIST-1 system.

But finding evidence of intelligent life on a distant planet is difficult. Unless Mr. Mxyzptlk or the Great Gazoo want to talk about your car’s extended car warranty, any signal we detect will likely be subtle, similar to the stray radio signals we emit from Earth. So the challenge is to distinguish actual signals from aliens, known as technosignatures, from the naturally occuring emissions of stars and planets. Recently a team used the Allen Telescope Array to capture 28 hours of TRAPPIST-1 signals in an effort to find the elusive aliens.

The study began with a few assumptions. The biggest one was to presume that if TRAPPIST-1 has an intelligent civilization it is likely spread across more than one world. Given how compact the system is, that isn’t too outlandish. Getting from one world to another wouldn’t be much more difficult than it is for us to get to the Moon. With that assumption, the team then assumed that the worlds would transmit radio messages between each other. Since the signals would need to transverse interplanetary distances, they would be the strongest and most clear technosignatures in the system. So the team focused on signals during a planet-planet occultation (PPO). That is when two planets line up from our vantage point. During a PPO any signal sent from the far planet to the closer planet would spill over and eventually reach us.

Illustration of a PPO event. Credit: Tusay, et al

With 28 hours of observation data in hand, the team filtered out more than 11,000 candidate signals. Signals that were stronger than the expected range for natural signals. Then using computer models of the system they determined 7 possible PPO events and further narrowed things down to about 2,200 potential signals occurring during a PPO window. From there they went on to determine whether any of those signals were statistically unusual enough to suggest an intelligent origin. The answer to that was sadly no.

Alas, if there are aliens in the TRAPPIST-1 system, we haven’t found them yet. But the result shouldn’t minimize this study. It is the longest continuous survey of the system to date, which is pretty cool. And it’s kind of amazing that we’ve reached the point where we’re able to do this study. We are actively searching known exoplanets in detail.

Reference: Tusay, Nick, et al. “A Radio Technosignature Search of TRAPPIST-1 with the Allen Telescope Array.” arXiv preprint arXiv:2409.08313 (2024).

The post SETI Scientists Scan TRAPPIST-1 for Technosignatures appeared first on Universe Today.

Categories: Science

Hexagonal electrohydraulic modules shape-shift into versatile robots

Matter and energy from Science Daily Feed - Wed, 09/18/2024 - 11:24am
Scientists at MPI-IS have developed electrically driven robotic components, called HEXEL modules, which can snap together into high-speed reconfigurable robots. Magnets embedded along the outside of the modules allow them to electrically and mechanically connect to other modules, forming robots with diverse shapes and capabilities. HEXEL modules are a promising technology for use in resource-limited environments, such as on space or rescue missions, and can be used to construct versatile robots from redundant parts, altogether promoting a sustainable robot design.
Categories: Science

Hexagonal electrohydraulic modules shape-shift into versatile robots

Computers and Math from Science Daily Feed - Wed, 09/18/2024 - 11:24am
Scientists at MPI-IS have developed electrically driven robotic components, called HEXEL modules, which can snap together into high-speed reconfigurable robots. Magnets embedded along the outside of the modules allow them to electrically and mechanically connect to other modules, forming robots with diverse shapes and capabilities. HEXEL modules are a promising technology for use in resource-limited environments, such as on space or rescue missions, and can be used to construct versatile robots from redundant parts, altogether promoting a sustainable robot design.
Categories: Science

Flexible circuits made with silk and graphene on the horizon

Matter and energy from Science Daily Feed - Wed, 09/18/2024 - 11:24am
Ultra-thin layers of silk deposited on graphene in perfect alignment represent a key advance for the control needed in microelectronics and advanced neural network development.
Categories: Science

Flexible circuits made with silk and graphene on the horizon

Computers and Math from Science Daily Feed - Wed, 09/18/2024 - 11:24am
Ultra-thin layers of silk deposited on graphene in perfect alignment represent a key advance for the control needed in microelectronics and advanced neural network development.
Categories: Science

Versatile knee exo for safer lifting

Matter and energy from Science Daily Feed - Wed, 09/18/2024 - 11:24am
A set of knee exoskeletons, built with commercially available knee braces and drone motors, has been shown to help counteract fatigue in lifting and carrying tasks. They helped users maintain better lifting posture even when tired, a key factor in defending against on-the-job injuries, the researchers say.
Categories: Science

These maps will change how you see the world

New Scientist Feed - Wed, 09/18/2024 - 11:00am
Geographer Alastair Bonnett on his pick of the most diverse maps, from a collection of 100,000 galaxies to a 12th-century Chinese depiction of rivers on a grid
Categories: Science

Is it really cheaper to cultivate your own fruit and vegetables?

New Scientist Feed - Wed, 09/18/2024 - 11:00am
Our gardening columnist James Wong isn’t convinced, and does the maths to get some answers
Categories: Science

How bad is modern life for our body clocks – and what can we do?

New Scientist Feed - Wed, 09/18/2024 - 11:00am
Modern life disrupts the circadian rhythms controlling our biology – increasing our risk of developing conditions ranging from diabetes to dementia. Lynne Peeples's new book The Inner Clock explores and offers solutions
Categories: Science

Terminator is back, in a striking but flawed anime version

New Scientist Feed - Wed, 09/18/2024 - 11:00am
We're trying to avert Judgment Day yet again – this time in an anime series for Netflix. But striking visuals can't make up for shortcomings in narrative and character development
Categories: Science

We physicists could learn a lot by stepping beyond our specialisms

New Scientist Feed - Wed, 09/18/2024 - 11:00am
A recent atomic physics workshop was outside my dark matter comfort zone, but learning about science beyond my usual boundaries was invigorating, says Chanda Prescod-Weinstein
Categories: Science

Ig Nobel prizes 2024: The unexpected science that won this year

New Scientist Feed - Wed, 09/18/2024 - 11:00am
From drunk worms to mammals that breath through their anuses, founder Marc Abrahams on the winners of this year's Ig Nobel prizes, for science that "makes people laugh, then think"
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator