It’s no secret that spending extended periods in space takes a toll on the human body. For years, NASA and other space agencies have been researching the effects of microgravity on humans, animals, and plants aboard the International Space Station (ISS). So far, the research has shown that being in space for long periods leads to muscle atrophy, bone density loss, changes in vision, gene expression, and psychological issues. Knowing these effects and how to mitigate them is essential given our future space exploration goals, which include long-duration missions to the Moon, Mars, and beyond.
However, according to a recent experiment led by researchers at Johns Hopkins University and supported by NASA’s Johnson Space Center, it appears that heart tissues “really don’t fare well in space” either. The experiment consisted of 48 samples of human bioengineered heart tissue being sent to the ISS for 30 days. As they indicate in their paper, the experiment demonstrates that exposure to microgravity weakens heart tissue and weakens its ability to maintain rhythmic beats. These results indicate that additional measures must be taken to ensure humans can maintain their cardiovascular health in space.
The study was led by Deok-Ho Kim and his colleagues from the Department of Biomedical Engineering at Johns Hopkins University (BME-JHU) and the JHU Center for Microphysiological Systems. They were joined by researchers from UC Boulder’s Ann and HJ Smead Department of Aerospace Engineering Sciences, the Institute for Stem Cell & Regenerative Medicine (ISCRM) and the Center for Cardiovascular Biology at the University of Washington, the Stanford Institute for Stem Cell & Regenerative Medicine, BioServe Space Technologies, and NASA’s Johnson Space Center. The paper that details their findings was published yesterday (September 23rd) in the Proceedings of the National Academy of Sciences.
Heart tissues within one of the launch-ready chambers. Credit: Jonathan TsuiPrevious research has shown that astronauts returning to Earth from the ISS suffer from a myriad of health effects consistent with certain age-related conditions, including reduced heart muscle function and irregular heartbeats (arrhythmias), most of which will dissipate over time. However, none of this research has addressed what happens at the cellular and molecular level. To learn more about these effects and how to mitigate them, Kim and his colleagues sent an automated “heart-on-a-chip” platform to the ISS for study.
To create this payload, the team relied on human-induced pluripotent stem cells (iPSCs), which can become many types of cells, to produce cardiomyocytes (heart muscle cells). These resulting tissues were placed in a miniaturized bioengineered tissue chip designed to mimic the environment of an adult human heart. The chips would then collect data on how the tissues would rhythmically contract, imitating how the heart beats. One set of biochips was launched aboard the SpaceX CRS-20 mission to the ISS in March 2020, while another was kept on Earth as a control group.
Once on the ISS, astronaut Jessica Meir tended the experiment, changing the liquid nutrients surrounding the tissues once each week while preserving tissue samples at specific intervals so gene readout and imaging analyses could be conducted upon their return to Earth. Meanwhile, the experiment sent real-time data back to Earth every 30 minutes (for 10 seconds at a time) on the tissue samples’ contractions and any irregular beating patterns (arrhythmias).
“An incredible amount of cutting-edge technology in the areas of stem cell and tissue engineering, biosensors and bioelectronics, and microfabrication went into ensuring the viability of these tissues in space,” said Kim in a recent Hub news release.
When the tissue chambers returned to Earth, he and his colleagues continued to maintain and collect data from the samples to see if there was any change in their abilities to contract. In addition to losing strength, the muscle tissues developed arrhythmias, consistent with age-related heart conditions. In a healthy human heart, the time between beats is about a second, whereas the tissue samples lasted nearly five times as long – though they returned to nearly normal once returned to Earth.
The team further found that the tissue cell’s protein bundles that help them contract (sarcomeres) were shorter and more disordered than those of the control group, another symptom of heart disease. What’s more, the mitochondria in the tissue samples grew larger and rounder and lost the characteristic folds that help them produce and use energy. Lastly, the gene readout in the tissues showed increased gene production related to inflammation and an imbalance of free radicals and antioxidants (oxidative stress).
This is not only consistent with age-related heart disease but also consistently demonstrated in astronauts’ post-flight checks. The team says these findings expand our scientific knowledge of microgravity’s potential effects on human health in space and could also advance the study of heart muscle aging and therapeutics on Earth. In 2023, Kim’s lab followed up on this experiment by sending a second batch of tissue samples to the ISS to test drugs that could help protect heart muscles from the effects of microgravity and help people maintain heart function as they age.
Meanwhile, the team continues to improve its tissue-on-a-chip system and has teamed up with NASA’s Space Radiation Laboratory to study the effects of space radiation on heart muscles. These tests will assess the threat solar and cosmic rays pose to cardiovascular health beyond Low Earth Orbit (LEO), where Earth’s magnetic field protects against most space radiation.
Further Reading: John Hopkins University, PNAS
The post Space Travel Weakens the Heart, New Study Finds appeared first on Universe Today.
Now is the time to catch Comet A3-Tsuchinshan-ATLAS at dawn.
The window is now open. If skies are clear, set your alarm heading into this weekend to see Comet C/2023 A3 Tsuchinshan-ATLAS at dawn. We’re already seeing great views of the comet this week from southern observers and astronauts aboard the International Space Station. The visibility window is now even creeping up to the southern tier latitudes of the contiguous United States (CONUS). If fortune favors us, the comet could hit an easy naked eye magnitude +2 by next week, and forward scattering could even boost this into negative magnitudes… the rare term ‘daytime comet’ is even getting kicked around a bit in cometwatching circles.
But the span to see this comet will be brief indeed. For most northern hemisphere observers, the comet will be a bashful one, never reaching much more than 10 degrees above the eastern horizon about 45 minutes before sunrise on the week centered around September 29th.
Exposures of Comet A3 against the brightening dawn. Credit: Chris Schur The Story of Comet A3 Tsuchinshan-ATLAS Thus FarWe wrote about prospects for this comet for Universe Today previously just last month. China’s Tsuchinshan (Purple Mountain) observatory and the automated ATLAS (Asteroid Terrestrial impact Last Alert System) survey discovered the comet on January 9th, 2023. I’ve seen the name abbreviated to simply ‘Comet A3’ or ‘Comet T-ATLAS’ in discussions on keystroke-conservative social media.
Likely a first-time visitor to the inner solar system from the distant Oort Cloud, the comet is on an orbit measured in millions of years. This may also be the one and only appearance of the comet in the inner solar system. That’s a good thing, in terms of dynamics and activity, as the comet may have never experienced the heat of the inner solar system in the past. The comet could well head towards permanent ejection from the solar system after perihelion.
Key dates coming right up include when the comet reaches perihelion this coming Friday on September 27th at 0.391 Astronomical Units (AU, 36.4 million miles or 58.6 million kilometers) from the Sun, just interior to Mercury’s aphelion point. The comet then makes its closest Earth approach on October 12th, at 0.556 AU distant.
Comet A3 Tsuchinshan-ATLAS will become more difficult to catch after October 7th, as it heads in to the Solar Heliospheric Observatory’s (SOHO) LASCO C3 field of view and approaches less than 15 degrees elongation from the Sun. The comet makes a second evening reappearance mid-month, which will most likely be less than favorable as it heads away from us and back out of the inner solar system. We could, however, see something interesting in late October (if the comet survives perihelion) as the tail precedes ahead of the outbound comet.
Chris Schur caught the comet from Payson, Arizona (with a narrow 10 minute window!) on the morning of September 23rd. Credit: Chris Schur. How the Comet is Performing NowThe comet seemed to be headed towards the long rolls of ‘great comets that weren’t’ this past summer, as it stalled at +10th magnitude. Now, the trend seems to have shifted, as the comet is over-performing versus expectations. As of writing this, the comet stands at +3rd magnitude and is rapidly brightening.
We’re already seeing signs of two tails (one dust and one ion) forming in this week’s images of the comet. Forward scattering may help boost the visibility of the comet next week, as all those dust particles reach a maximum illumination angle as seen from our Earthly vantage point in early October. The comet’s orbit passes edge-on from our vantage point on October 14th. The comet will seem to hang stationary low in the dawn next week, as it loops towards us, and then crosses between the Earth and the Sun.
Comet T-ATLAS as imaged from Tivoli Farm, Namibia on September 22nd (note the fan of the comet’s second tail off to the left). Credit: Gerald Rhemann. How to See the CometThe October apparition will be a tricky one for sure. A good strategy is to use binoculars and start sweeping low to the eastern horizon about an hour before local sunrise. The +1st magnitude star Regulus (Alpha Leonis) will make a good ‘guide star’ to find the comet. The star will be about an outstretched hand’s width to the observer’s lower right. The comet pairs with the slim waning crescent Moon on the morning of September 30th, making for a grand photo-op. That same Moon is headed towards an annular solar eclipse on October 2nd.
The view on the morning of September 30th. Credit: Starry Night Edu Software.Clouded out? We feel your frustration here in eastern Tennessee, as clouds from approaching hurricane Helene move inland this coming weekend. Astronomer Gianluca Masi will also carry the comet live on the evening of October 9th.
Comet C/2023 A3 Tsuchinshan-ATLAS from September 24th. Credit: The Virtual Telescope Project.“It (Comet T-ATLAS) survived and so far, it looks brighter than expected.” Astrophotographer Eliot Herman told Universe Today. “I still don’t think it will be amazing when it can be seen when dark enough… I am thinking maybe March 2013 Comet (C/2011 L4) PanSTARRS level – which was visible to the eye and pretty nice with a camera.”
We can only hope for a bright comet as depicted by astronomer Charles Piazzi Smyth’s painting of the Great Daytime Comet of 1843:
Smyth’s painting, at the Greenwich Maritime Museum. Credit: Dave Dickinson. The Comet From the ISSAstronauts aboard the International Space Station already caught the comet from their vantage point in low Earth orbit this week. NASA astronaut Matthew Dominick produced this fine animation:
Comet A3 Tsuchinshan-ATLAS is teasing us with the recent memories of two other dawn comets. Remember P1 McNaught in 2006-2007 and W3 Lovejoy in 2011-2012? Both beat the odds, and went on to become fine comets, ahead of expectations.
Comet McNaught imaged from Villa Alemana, Chile in January 2007. Credit: Garcia Ruben/Wikimedia Commons/Public Domain.As always with comets, a caveat is in order: several factors will conspire against your cometary quest. First: as noted, the comet will appear very low to the horizon. This means it will fight against the thick murk of the atmosphere and the brightening twilight sky. Secondly, comets are intrinsically dark objects, with a low surface brightness or albedo… remember Rosetta’s views of Comet 67P Churumov-Gerasimenko? Lastly, like deep sky objects, all of that precious magnitude gets dispersed over an apparent surface area. This makes a +2 magnitude comet much fainter looking versus a +2nd magnitude star. During F3 NEOWISE’s 2020 apparition, I could juuuust start to convince myself that it was naked eye when it reached around +1st magnitude.
Comet C/2023 A3 (Tsuchinshan-ATLAS) is finally here ! ???I captured this image this morning at 09:22 UTC from @LCOAstro in Atacama desert in Chile ?? The view was absolutely spectacular ! The clouds were constantly moving just above the horizon, but we got really lucky when the… pic.twitter.com/AoClHkatFr
— Yuri Beletsky (@YBeletsky) September 24, 2024
NEOWISE… or Nishimura?We had two recent comets perform very similar to Comet A3 Tsuchinshan-ATLAS. In 2020, Comet F3 NEOWISE became a fine naked eye comet at dawn, wowing early morning observers. On the flip side, 2023’s Comet P1 Nishimura flirted with naked eye brightness, but never really became a general crowd pleaser.
Clear skies on your hunt this coming week, to see what’s most likely to be the best comet of 2024.
The post Will Comet A3 Tsuchinshan-ATLAS Shine Brighter Than Expected? appeared first on Universe Today.