A newly discovered mechanism for the flow and freezing of ice sheet meltwater could improve estimates of sea level rise around the globe. Researchers have found a new mechanism that explains the process of how impermeable horizontal ice layers are formed below the surface, a process critical for determining the contribution of ice sheet meltwater to sea level rise.
Scientists have uncovered the detailed structure of the aluminum oxide surface, a challenge that has baffled researchers for decades.
Researchers have developed a groundbreaking smartphone app that measures blood pressure using a smartphone's built-in sensors, eliminating the need for traditional cuffs. This technology can make blood pressure monitoring more accessible and convenient, especially for underserved populations. By allowing users to measure their blood pressure anytime and anywhere, the app could revolutionize cardiovascular care and improve early detection of hypertension.
Researchers have created 'smart' microparticles that self-assemble in response to the addition of a specific molecule. This work can help explain the behavior of biomolecular complexes, as well as pave the way for novel polymers that respond to their environment.
Could invisibility cloaks become a reality? New research brings this science fiction concept a step closer, with a breakthrough software package that simulates how waves interact with complex materials.
Could invisibility cloaks become a reality? New research brings this science fiction concept a step closer, with a breakthrough software package that simulates how waves interact with complex materials.
Several fields of mathematics have developed in total isolation, using their own 'undecipherable' coded languages. Mathematicians now present 'big algebras,' a two-way mathematical 'dictionary' between symmetry, algebra, and geometry, that could strengthen the connection between the distant worlds of quantum physics and number theory.
A groundbreaking study takes advantage of advanced spectroscopic methods and theory to shed light on the intricate processes involved in converting carbon dioxide (CO2) into valuable chemicals like ethylene and ethanol. This research holds significant promise for advancing sustainable practices in the chemical industry.
Scientists have developed an accessible software solution specifically designed for the analysis of complex medical health data. The open-source software called 'ehrapy' enables researchers to structure and systematically examine large, heterogeneous datasets. The software is available to the global scientific community to use and further develop.
Extreme conditions prevail inside stars and planets. The pressure reaches millions of bars, and it can be several million degrees hot. Sophisticated methods make it possible to create such states of matter in the laboratory -- albeit only for the blink of an eye and in a tiny volume. So far, this has required the world's most powerful lasers, and the opportunities for experiments are correspondingly rare. A research team has now succeeded in creating and observing extreme conditions with a much smaller laser.
Extreme conditions prevail inside stars and planets. The pressure reaches millions of bars, and it can be several million degrees hot. Sophisticated methods make it possible to create such states of matter in the laboratory -- albeit only for the blink of an eye and in a tiny volume. So far, this has required the world's most powerful lasers, and the opportunities for experiments are correspondingly rare. A research team has now succeeded in creating and observing extreme conditions with a much smaller laser.
A new study reveals how different synthesis methods can profoundly impact the structure and function of high entropy oxides, a class of materials with applications in everyday electronic devices.
A new study reveals how different synthesis methods can profoundly impact the structure and function of high entropy oxides, a class of materials with applications in everyday electronic devices.
A new article analyzes in depth the physical problems associated with DNA packaging that have often been neglected in structural models of chromosomes. The study demonstrates that the multilaminar organization of DNA, proposed from previous experimental research, is fully compatible with the structural and functional properties of chromosomes. This organization can be explained by weak interactions between nucleosomes, which are the repetitive blocks that fold the DNA double helix.
How can computer models help design microbial communities? Researchers examined the development perspectives of so-called synthetic biology. In a new article, they explain why computer-aided biology has an important role to play.
Astronomers have directed NASA's James Webb Space Telescope to examine the outskirts of our Milky Way galaxy. Scientists call this region the Extreme Outer Galaxy due to its location more than 58,000 light-years away from the Galactic Center. (For comparison, Earth is approximately 26,000 light-years from the center.)
Researchers mined the molecular foundations of cancer and uncovered a new reason chimeric antigen receptor (CAR-T cell therapy) fails in some patients. This discovery has fueled new strategies that incorporate antibodies and gene editing to improve the outcome of this breakthrough treatment for patients.
Researchers have been able to initiate a controlled movement in the very heart of an atom. They caused the atomic nucleus to interact with one of the electrons in the outermost shells of the atom. This electron could be manipulated and read out through the needle of a scanning tunneling microscope. The research offers prospects for storing quantum information inside the nucleus, where it is safe from external disturbances.
Researchers have been able to initiate a controlled movement in the very heart of an atom. They caused the atomic nucleus to interact with one of the electrons in the outermost shells of the atom. This electron could be manipulated and read out through the needle of a scanning tunneling microscope. The research offers prospects for storing quantum information inside the nucleus, where it is safe from external disturbances.
A research team has made a major discovery by designing molecules that could revolutionize computing.
Pages