Lower cooling requirements, longer operating times, lower error rates: Quantum computers based on spin photons and diamond promise significant advantages over competing quantum computing technologies. The consortium of the BMBF project SPINNING coordinated by Fraunhofer IAF has succeeded in decisively advancing the development of spin-photon-based quantum computers.
Researchers are finding new ways to make the hydrogen evolution reaction harder, better, faster, and stronger.
Researchers show that the improvements in signal strength during surface-enhanced fluorescence and Raman spectroscopy can extend even through a nanoscale protective layer. This research may lead to significant improvements in the sensitivity of biosensors and the development of novel point-of-care diagnostics.
In their peer-reviewed work, Calcea Johnson and Ne'Kiya Jackson present five new ways of proving Pythagoras' Theorem via trigonometry. They also detail a new method for finding proofs that yield at least five more.
Researchers have revealed the 3D structure of lab-made light-harvesting complex II (LHCII), a key component in photosynthesis. Using cryo-electron microscopy, they found that artificial LHCII closely mirrors the natural version, advancing research into solar energy harnessing and artificial photosynthesis technologies.
Researchers have invented a new way to align 3D semiconductor chips by shining a laser through concentric metalenses patterned on the chips to produce a hologram. Their work can help to lower the cost of producing 2D semiconductor chips, enable 3D photonic and electronic chips, and may pave the way for other low-cost, compact sensors.
The human genetic code is fully mapped out, providing scientists with a blueprint of the DNA to identify genomic regions and their variations responsible for diseases. Traditional statistical tools effectively pinpoint these genetic 'needles in the haystack,' yet they face challenges in understanding how many genes contribute to diseases, as seen in diabetes or schizophrenia.
Increasing amounts of data require storage, often for long periods. Synthetic polymers are an alternative to conventional storage media because they maintain stored information while using less space and energy. However, data retrieval by mass spectrometry limits the length and thus the storage capacity of individual polymer chains. Researchers have now introduced a method that overcomes this limitation and allows direct access to specific bits without reading the entire chain.
Increasing amounts of data require storage, often for long periods. Synthetic polymers are an alternative to conventional storage media because they maintain stored information while using less space and energy. However, data retrieval by mass spectrometry limits the length and thus the storage capacity of individual polymer chains. Researchers have now introduced a method that overcomes this limitation and allows direct access to specific bits without reading the entire chain.
Researchers have developed a new binarized neural network (BNN) scheme using ternary gradients to address the computational challenges of IoT edge devices. They introduced a magnetic RAM-based computing-in-memory architecture, significantly reducing circuit size and power consumption. Their design achieved near-identical accuracy and faster training times compared to traditional BNNs, making it a promising solution for efficient AI implementation in resource-limited devices, such as those used in IoT systems.
Improvements in three-dimensional (3D) scanning have enabled quick and accurate scanning of 3D objects, including cultural heritage objects, as 3D point cloud data. However, conventional edge-highlighting visualization techniques, used for understanding complex 3D structures, result in excessive line clutter, reducing clarity. Addressing these issues, a multinational team of researchers have developed a novel technique, involving independent rendering of soft and sharp edges in 3D structures, resulting in improved clarity and depth perception.
Improvements in three-dimensional (3D) scanning have enabled quick and accurate scanning of 3D objects, including cultural heritage objects, as 3D point cloud data. However, conventional edge-highlighting visualization techniques, used for understanding complex 3D structures, result in excessive line clutter, reducing clarity. Addressing these issues, a multinational team of researchers have developed a novel technique, involving independent rendering of soft and sharp edges in 3D structures, resulting in improved clarity and depth perception.
In earthquake-prone areas like Japan, there is a need for better prediction of soil stability to mitigate liquefaction risks. Towards this end, researchers have used machine learning models, including artificial neural networks and bagging techniques, to create accurate 3D maps of bearing layers using data from 433 locations in Setagaya, Tokyo. This approach can identify stable construction sites, enhance disaster planning, and contribute to safer urban development, making cities more resilient to liquefaction risks.
In earthquake-prone areas like Japan, there is a need for better prediction of soil stability to mitigate liquefaction risks. Towards this end, researchers have used machine learning models, including artificial neural networks and bagging techniques, to create accurate 3D maps of bearing layers using data from 433 locations in Setagaya, Tokyo. This approach can identify stable construction sites, enhance disaster planning, and contribute to safer urban development, making cities more resilient to liquefaction risks.
A team has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium.
A recent review suggests new temperature measuring technologies could make that process much simpler, amid growing agricultural challenges fueled by fluctuating climates.
Researchers have pored over more than two decades' worth of data from NASA's Chandra X-Ray Observatory to show there's new knotty science to discover around black holes.
It acts as a sort of molecular fumigator to battle phages and plasmids.
Researchers have strengthened the case that matter becomes dark energy when massive stars collapse and become black holes.
In 2022, countries pledged to halt biodiversity loss by protecting 30 per cent of the planet by 2030, but progress has been too slow thus far
Pages