For the first time, climate scientists have explicitly said it will be impossible to limit peak warming to 1.5°C. Now our focus should be on taking action, not meaningless platitudes and slogans
In children aged 6 to 11, long covid seems to often present as sleep problems or abdominal issues, while adolescents report fatigue and pain
In the scorching heat of summer, anyone who spends time outside could benefit from a cooling fabric. While there are some textiles that reflect the sun's rays or wick heat away, current options require boutique fibers or complex manufacturing processes. But now, demonstrations of a durable chalk-based coating show it can cool the air underneath treated fabric by up to 8 degrees Fahrenheit.
The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.
Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.
Researchers have developed an eco-friendly refrigeration device with record-breaking cooling performance in the world, setting to transform industries reliant on cooling and reduce global energy use. With a boost in efficiency of over 48%, the new elastocaloric cooling technology opens a promising avenue for accelerating the commercialization of this disruptive technology and addressing the environmental challenges associated with traditional cooling systems.
A new model accurately represents the airflow around rotors, even under extreme conditions. The first comprehensive model of rotor aerodynamics could improve the way turbine blades and wind farms are designed and how wind turbines are controlled.
The innovative strength of a society depends on the level of academic freedom. An international team has now demonstrated this relationship. The researchers analyzed patent applications and patent citations in a sample from around 160 countries over the 1900--2015 period in relation to indicators used in the Academic Freedom Index. In view of the global decline in academic freedom over the past 10 years, the researchers predict a loss in innovative output.
Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems and tools. It has a long service life, is comparatively inexpensive and does not tend to spontaneously combust. Energy density is also making progress. However, experts are still puzzled as to why lithium iron phosphate batteries undercut their theoretical electricity storage capacity by up to 25 per cent in practice.
An insect species that evolved 130 million years ago is the inspiration for a new research study to improve navigation systems in drones, robots, and orbiting satellites.
New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.
New fusion simulations of the inside of a tokamak reveal the ideal spot for a 'cave' with flowing liquid lithium is near the bottom by the center stack, as the evaporating metal particles should land in just the right spot to dissipate excess heat from the plasma.
A recent study shows that climate change may cause many areas in Canada to experience significant droughts by the end of the century. In response, the researchers have introduced an advanced AI-based method to map drought-prone regions.
A team of scientists was recently able to observe how promethium forms chemical bonds when placed in an aqueous solution.
Bioengineers around the world have been working to create plastic-producing microbes that could replace the petroleum-based plastics industry. Now, researchers have overcome a major hurdle: getting bacteria to produce polymers that contain ring-like structures, which make the plastics more rigid and thermally stable. Because these molecules are usually toxic to microorganisms, the researchers had to construct a novel metabolic pathway that would enable the E. coli bacteria to both produce and tolerate the accumulation of the polymer and the building blocks it is composed of. The resulting polymer is biodegradable and has physical properties that could lend it to biomedical applications such as drug delivery, though more research is needed.
Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.
Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.
Although climate change may bring increased precipitation to many parts of the United States, some areas may face drier conditions and lower streamflow, resulting in decreased hydropower generation.
Physicists have developed a new model that describes how filaments assemble into active foams.
Pages