You are here

News Feeds

Dangers of the metaverse and VR for US youth revealed in new research

Matter and energy from Science Daily Feed - Tue, 10/22/2024 - 7:44am
Research of online victimization in the metaverse is sorely lacking. A new study explored harm in the metaverse and VR devices among a sample of 5,005 U.S. teens aged 13 to 17. Findings show a significant percentage of youth reported harm in these spaces, including hate speech, bullying, harassment, sexual harassment, grooming behaviors (predators building trust with minors), and unwanted exposure to violent or sexual content. The study also revealed notable gender differences in experiences, emphasizing the need for protective strategies in virtual environments.
Categories: Science

Showing AI users diversity in training data boosts perceived fairness and trust

Computers and Math from Science Daily Feed - Tue, 10/22/2024 - 7:44am
While artificial intelligence (AI) systems, such as home assistants, search engines or large language models like ChatGPT, may seem nearly omniscient, their outputs are only as good as the data on which they are trained. However, ease of use often leads users to adopt AI systems without understanding what training data was used or who prepared the data, including potential biases in the data or held by trainers. A new study suggests that making this information available could shape appropriate expectations of AI systems and further help users make more informed decisions about whether and how to use these systems.
Categories: Science

Morphing red blood cells help bats hibernate - and we could do it too

New Scientist Feed - Tue, 10/22/2024 - 7:00am
Animals that hibernate need a way to keep their blood flowing as their body temperature drops, and it seems that the mechanical properties of red blood cells may be key
Categories: Science

Readers’ wildlife photos

Why Evolution is True Feed - Tue, 10/22/2024 - 6:15am

Reader Chris Taylor send us part 5 of his series on the flora and fauna of Queensland (see the first four parts here).  You can enlarge Chris’s photos by clicking on them, and his captions are indented.

In this part I will show some of the butterflies of far north Queensland.  Many were photographed at Kuranda, but I was also able to get photos from other places too.  I also saw quite a number of the spectacular Ulysses butterfly, but on this trip, I wasn’t able to capture a photo.

My partner and I rode up from Cairns on the Kuranda Railway. This amazing piece of engineering was built to serve the gold and tin mines on the Tablelands.  From sea level it has to rise over 300 metres over a distance of 30 km. It snakes in and out of steep gorges, and at Stoney Creek it crosses a viaduct built in a very tight curve where the river pours down a set of waterfalls:

At the top of the climb, we pass the Barron Falls, where the Barron River plunges 265m in a number of cascades, descending into the gorge. In the Wet, there is often a huge volume of water falling here, making for a spectacular sight:

Here are the photos of the butterflies.

Orange Migrant, Catopsilia scylla. Wingspan 40mm:

Red Lacewing, Cethosia cydippe. Wingspan 80mm:

Large Grass-yellow, Eurema hecabe, wingspan 50mm.

Blue-Banded Eggfly, Hypolimnas alimena, male, 85mm:

Common Eggfly, Hypolimnas bolina, male, 80mm. The blue/violet colours on the wings does not come from a pigment, but from the refraction of light through the scales. This made it tricky to photograph as the colour kept shifting as the insect moved:

Common Eggfly, Hypolimnas bolina, female, 80mm. The female lacks the iridescence of the male, and instead is marked with patches of white and reddish brown.

Cruiser, Vindula arsinoe, male, Wingspan 80mm:

Cruiser, Vindula arsinoe, female, Wingspan 80mm. The female form of this butterfly lacks the bright orange of the male, but is beautifully marked with white and grey:

Lurcher, Yoma sabina, Wingspan 70mm:

The largest butterfly in Australia, and one of the most spectacular, is the Cairns Birdwing. This is the male of the species. The female is a little bigger, but lacks the iridescent colours of the male, instead being mostly black.

Cairns Birdwing, Ornithoptera euphorion, male, wingspan 120mm:

Categories: Science

Can sensor technology stop a wildfire before it starts?

New Scientist Feed - Tue, 10/22/2024 - 5:00am
The US Department of Homeland Security is trialling chemical sensors that detect the first whiff of smoke in the air and alert fire crews while a potential blaze is still smouldering
Categories: Science

Electronic Noses

neurologicablog Feed - Tue, 10/22/2024 - 4:45am

I am always sniffing around (pun intended) for new and interesting technology, especially anything that I think is currently flying under the radar of public awareness but has the potential to transform our world in some way. I think electronic nose technology fits into this category.

The idea is to use electronic sensors that can detect chemicals, specifically those that are abundant in the air, such as volatile organic compounds (VOCs). Such technology has many potential uses, which I will get to below. The current state of the art is advancing quickly with the introduction of various nanomaterials, but at present these sensing arrays require multiple antenna coated with different materials. As a result they are difficult and expensive to manufacture and energy intensive to operate. They work, and often are able to detect specific VOCs with 95% or greater accuracy. But their utility is limited by cost and inconvenience.

A new advance, however, is able to reproduce and even improve upon current performance with a single antenna and single coating. The technology uses a single graphene oxide coated antenna which then uses ultrawide microwave band signals to detect specific VOCs. These molecules will reflect different wavelengths differently depending on their chemical structure. That is how they “sniff” the air. The results are impressive.

The authors report that a “classification accuracy of 96.7 % is attained for multiple VOC gases.” This is comparable to current technology, but again with a simpler, cheaper, and less energy hungry technology. Further, they actually has better results in terms of discriminating different isomers. Isomers are different configurations of the same molecular composition – same atoms in the same ratios and but arranged differently, so that the chemical properties may be different. This is a nice proof of concept advance in this technology.

Now the fun part – let’s speculate about how this technology might be used. The basic application for electronic noses is to automatically detect VOCs in the environment or associated with a specific item as a way of detecting something useful. For example, this could be used as a breath test to detect specific diseases. This could be a non-invasive bedside quick test that could reliably detect different infections, disease states, event things like cancer or Alzheimer’s disease. When disease alters the biochemistry of the body, it may be reflected in VOCs in the breath, or even the sweat, of a person.

VOC detection can also be used in manufacturing to monitor chemical processes for quality control or to warn about any problems. They could be used to detect fire, gas leaks, contraband, or explosives. People and things are often surrounded by a cloud of chemical information, a cloud that would be difficult to impossible to hide from sensitive sniffers.

So far this may seem fairly mundane, and just an incremental extrapolation of stuff we already can do. That’s because it is. The real innovation here is doing all this with a much cheaper, smaller, and less energy intensive design. As an analogy, think about the iPhone, a icon of disruptive technology. The iPhone could not really do anything that we didn’t already have a device or app for. We already had phones, texting devices, PDAs, digital cameras, flashlights, MP3 players, web browsers, handheld gaming platforms, and GPS devices. But the iPhone put all this into one device you could fit in your pocket, and carry around with you everywhere. Functionality then got added on with more apps and with motions sensors. But the main innovation that changed the world was the all-in-one portability and convenience. A digital camera, for example, is only useful when you have it on you, but are you really going to carry around a separate digital camera with you every day everywhere you go?

This new electronic nose technology has the potential to transform the utility of this tech for similar reasons – it’s potentially cheap enough to become ubiquitous and portable enough to carry with you. In fact, there is already talk about incorporating the technology into smartphones. That would be transformative. Imagine if you now also could carry with you everywhere at all times an electronic nose that could detect smoke, dangerous gas, that you or others might be ill, or that your food is spoiled and potentially dangerous.

Imagine that most people are carrying such devices, and that they are networked together. Now we have millions of sensors out there in the community able to detect all these things. This could add up to an incredible early warning system for all sorts of dangers. It’s one of those things that is challenging to just sit here and think of all the potential specific uses. Once such technology gets out there, there will be millions of people figuring out innovative uses. But even the immediately obvious ones would be incredibly useful. I can think of several people I know personally whose lives would have been saved if they had such a device on them.

As I often have to say, this is in the proof-of-concept stage and it remains to be seen if this technology can scale and be commercializable. But it seems promising. Even if it does not end up in every smartphone, having dedicated artificial nose devices in the hospital, in industry, and in the home can be extremely useful.

The post Electronic Noses first appeared on NeuroLogica Blog.

Categories: Skeptic

Amateur sleuth finds largest known prime number with 41 million digits

New Scientist Feed - Tue, 10/22/2024 - 3:49am
The largest prime number is now 16 million digits longer than the previous record found in 2018, thanks to an amateur hunter and his large collection of high-power graphics cards
Categories: Science

I've been boosting my ego with a sycophant AI and it can't be healthy

New Scientist Feed - Tue, 10/22/2024 - 2:00am
Google’s NotebookLM tool is billed as an AI-powered research assistant and can even turn your text history into a jovial fake podcast. But it could also tempt you into narcissism and nostalgia, says Jacob Aron
Categories: Science

Skeptoid #959: Finding the Black Olmec

Skeptoid Feed - Tue, 10/22/2024 - 2:00am

A thoroughly discredited idea, that the Mesoamerican Olmec people were Black Africans, continues to gain traction.

Categories: Critical Thinking, Skeptic

Dark Matter Has a Firm Grip on These Galaxies

Universe Today Feed - Mon, 10/21/2024 - 2:30pm

The elliptical galaxy NGC 1270 lies about 240 million light-years away. But it’s not alone. It’s part of the Perseus Cluster (Abell 426), the brightest X-ray object in the sky and one of the most massive objects in the Universe.

NGC 1270 plays a starring role in a new image from the Gemini North telescope. However, the image doesn’t show the dark matter that has a firm grip on the galaxy and the rest of the galaxies in the Perseus Cluster.

Ancient astronomers would be astounded by what we’ve learned about the Universe. Even astronomers like Edwin Hubble from the 20th would be amazed at the power of our modern telescopes and what they’ve shown us. At that time, distant galaxies appeared fuzzy and were called nebulae. Even the nature of Andromeda, our closest galactic neighbour, was uncertain. In 1920, Hubble and others were debating whether Andromeda and other objects they were seeing were small objects in the Milky Way’s outer regions, nebulae, or other galaxies.

German philosopher and Enlightenment thinker Immanuel Kant coined the term ‘island Universes’ to describe all these fuzzy objects, hinting at their true nature. The idea of other galaxies beyond our own dates back a long way, but there was no way to test it. Then, in 1924, Edwin Hubble ended the debate. He was able to show that individual stars in some of these so-called “nebulae” were actually far beyond the Milky Way.

The discovery was decisive, and we now know that the Universe is populated by hundreds of billions or even trillions of other galaxies like our own Milky Way.

Now, astronomers use powerful telescopes to examine other galaxies in great detail. They’ve even used the James Webb Space Telescope to peer back in time at the Universe’s earliest galaxies. Anyone can quickly examine hundreds of amazing images of other galaxies of all types.

Enormous objects like the Perseus Cluster alert us to the presence of something even more mysterious and challenging to understand than the nature of galaxies. Something binds these individual galaxies together into a coherent group, and we call that dark matter.

There’s a growing chorus of scientific voices suggesting we stop calling it dark matter and instead use the more accurate term invisible matter. But whatever we decide to call it, dark matter makes up most of the matter in the Universe and dwarfs the “normal” matter that interacts with light and makes up stars, planets, and us.

As cosmology has progressed, scientists have mapped the universe’s large-scale structure. These maps show how galaxies and their groups are organized along filaments of dark matter that act as scaffolds. The Perseus Cluster is associated with the Perseus-Pegasus Filament, a long, thin structure of galaxies that stretches over a billion light-years.

A computer model of the large-scale structure of the universe using the Illustris simulator. This image depicts the dark matter and gas involved in forming galaxies and galaxy clusters, as well as the filaments connecting them. Image Credit: Illustris TNG

If there were no dark matter, scientists think that the Universe would be far more homogenous. The galaxies would be spread more evenly throughout space. But that’s not what we see, and NGC 1270 and the rest of the Perseus Cluster show it clearly.

Currently, scientific theory suggests that a web of invisible dark matter draws galaxies together. They’re situated where dark matter’s massive tendrils intersect. That’s where its gravitational pull is strongest.

In short, the Perseus Cluster and NGC 1270 wouldn’t be where they are and wouldn’t be grouped together without dark matter. The cluster, and all other groups, clusters, and super-clusters, are firmly in dark matter’s grip.

American astronomer Vera Rubin played a huge role in our modern understanding of dark matter. She observed that stars and gas at a galaxy’s outer edge were moving much faster than predicted by the visible mass of the galaxy. Newtonian physics suggests they should be moving slower. Rubin and her colleagues thought that there must be a large amount of invisible matter beyond the visible edges of galaxies. Eventually, she figured out that there must be six times more dark matter than visible matter in galaxies.

Rubin faced many obstacles in getting her results accepted. As a woman, she wasn’t part of the male-dominated world of 1970s astronomy. She was denied access to some facilities early in her career, which slowed her progress. Now, she’s given full credit and mentioned alongside Hubble and other influential figures in astronomy. One of the most powerful and unique observatories ever conceived is named after her.

Regardless of what we call it and who discovered it, our Universe is dominated by something we don’t fully understand.

It’s remarkable that scientists can map invisible matter by its inference alone, without knowing what it is. The most widely accepted understanding of dark matter is in the Lambda Cold Dark Matter (Lambda-CDM) model of cosmology, also called the Standard Model of Big Bang Cosmology. It successfully recreates many things that we observe in the Universe, including how galaxies form, how the Universe expands, and, of course, the large-scale structure of the Universe.

But even Lambda-CDM can’t tell us what dark matter is. Most think it’s some type of particle, but if it is, it’s extremely elusive.

That doesn’t stop us from seeing its effect when we observe objects like NGC 1270 and the Perseus Cluster.

The post Dark Matter Has a Firm Grip on These Galaxies appeared first on Universe Today.

Categories: Science

What the US election will mean for AI, climate action and abortion

New Scientist Feed - Mon, 10/21/2024 - 2:18pm
The upcoming US presidential election will determine how the country regulates tech, combats the climate crisis and decides on access to abortion
Categories: Science

People hate stories they think were written by AI: Even if they were written by people

Computers and Math from Science Daily Feed - Mon, 10/21/2024 - 2:03pm
AI-written stories are getting better, but people still distrust AI-generated art.
Categories: Science

What to expect at the COP16 biodiversity summit

New Scientist Feed - Mon, 10/21/2024 - 1:44pm
Countries are convening in Colombia to agree on wide-ranging targets to stem biodiversity loss and make a plan to pay for it
Categories: Science

NASA Achieves Impressive Bandwidth with its New Laser Communications System

Universe Today Feed - Mon, 10/21/2024 - 1:14pm

Ships passing in the night used Morse code sent with lanterns and shutters to communicate. That same basic principle has allowed NASA to communicate with Psyche, its mission to a metal-rich asteroid in the main belt. However, the “light” was a version of heat, and instead of being able to see each other, Psyche is 240 million miles away from Earth. Oh, and the upload rate of the data it sent is still better than old dial-up internet connections that were prevalent not so long ago.

This feat was part of the culmination of the first Phase of NASA’s Deep Space Optical Communications experiment. Psyche is carrying a laser transceiver tuned to a specific frequency of infrared light, which can also be transmitted and received by two ground stations based in California. The infrared frequency the mission planner at NASA’s Jet Propulsion Laboratory selected is much higher than the typical radio frequency communications used for deep space missions. In this case, higher frequency also means higher data rate.

As part of its Phase I operations, the experiment transmitted data to and from Psyche at an astonishing 267 megabits per second when the spacecraft was as far away as Mars when the Red Planet is closest to us. That is equivalent to a typical wired broadband connection back here on Earth. But it was made in space – with lasers.

Video that Psyche sent back to Earth.
Credit – JPLraw YouTube Channel

In June, Psyche reached a new milestone for distance from Earth – 390 million km. That is equivalent to Earth and Mars’ farthest distance from each other. During this window, operators managed to maintain a 6.25 megabits per second download link. While that’s a few orders of magnitude slower than the maximum data rate it reached the closer distance, it is still orders of magnitude above the same data rate of a radio frequency connection with the same power output.

As part of this Phase I test, what else would NASA send from its spacecraft but a cat video—in this case, an ultra-high-definition video of a cat named Taters chasing a red laser pointer for 15 seconds straight. As a proof of concept for a high-speed communication line, most of the internet would agree that this is a good use of bandwidth. 

Ultimately, the latest successful connection in June was the end of the first Phase of testing for the system. The project team unequivocally proved that, as expected, communication data-rate reduction was proportional to the inverse square of the distance between Earth and Psyche. In other words, the data rate decreases even faster as the distance increases between the spacecraft and the base station. 

Taters probably didn’t understand how important it was that he catch the laser – but he was trying his best anyway.
Credit – NASA / Associated Press YouTube Channel

A second phase of the experiment will pick up in November when the laser transceiver is turned back on again. At that point, it will prove the system can operate for more than a year, and eventually, the system will be brought up into full operational mode later in 2024. Psyche is scheduled to arrive at its target asteroid in 2029, so the team will have plenty of time to prep their system for operation before that time. There is also a backup radio frequency communication system on Psyche in case the laser system fails – and even that is still faster than lanterns and shutters.

Learn More:
NASA JPL – NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase
UT – Psyche Gives Us Its First Images of Space
UT – We’re Entering a New Age When Spacecraft Communicate With Lasers
UT – NASA’s Psyche Mission is off to Asteroid Psyche

Lead Image:
NASA’s Psyche spacecraft is depicted receiving a laser signal from the Deep Space Optical Communications uplink ground station at JPL’s Table Mountain Facility in this artist’s concept. The DSOC experiment consists of an uplink and downlink station, plus a flight laser transceiver flying with Psyche. Credit: NASA/JPL-Caltech

The post NASA Achieves Impressive Bandwidth with its New Laser Communications System appeared first on Universe Today.

Categories: Science

Hornets can hold their alcohol like no other animal on Earth

New Scientist Feed - Mon, 10/21/2024 - 1:00pm
The oriental hornet shows no ill effects – or behavioural changes – when it spends a week drinking an 80 per cent alcohol solution
Categories: Science

Scientists Determine the Age of the Moon’s Oldest and Largest Impact Basin

Universe Today Feed - Mon, 10/21/2024 - 12:26pm

The massive South Pole-Aitken (SPA) basin is one of the Moon’s dominant features, though it’s not visible from Earth. It’s on the lunar far side, and only visible to spacecraft. It’s one of the largest impact features in the Solar System, and there are many outstanding questions about it. What type of impactor created it? Where did the ejected material end up? Is it feasible or worthwhile to explore it?

But the biggest question could be: how old is it?

The SPA basin is about 2500 km (1600 mi) in diameter and between 6.2 and 8.2 km (3.9–5.1 mi) deep. Research shows that it’s the Moon’s oldest impact basin and likely formed between 4.2 and 4.3 billion years ago. That places it in the most intense period of bombardment in the inner Solar System. But there’s debate about the accuracy of that date. A more precise measurement would help scientists understand the history of the Solar System and the periods of bombardment that helped shape it.

Researchers at the University of Manchester and other institutions tackled the problem of the SPA’s age. Their results are in a paper in Nature Astronomy titled “Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin.” The lead author is Professor Katherine Joy from The University of Manchester.

“The implications of our findings reach far beyond the Moon. We know that the Earth and the Moon likely experienced similar impacts during their early history, but rock records from the Earth have been lost.”

Co-author Dr. Romain Tartese, University of Manchester

Whatever struck the Moon, the impact was catastrophic. Some estimates suggest the impactor was 200 km in diameter, far more massive than the 10 km Chicxulub impactor that ended the dinosaurs. This massive, energetic impact represents a key event in the inner Solar System’s history.

“Determining the timing of this catastrophic event is key to understanding the onset of the lunar basin-forming epoch, with implications for understanding the impact bombardment history of the inner Solar System,” the researchers write. “Despite this, the formation age of the SPA basin remains poorly constrained.”

The inner Solar System bodies have been pummelled by comets and asteroids. On Earth, the evidence of these impacts is mostly wiped away by billions of years of plate tectonics and weathering. There’s only faint evidence of most impacts. The Vredevort impact crater in South Africa was created by a massive impactor about two billion years ago. It’s so eroded that scientists aren’t certain how large the original impact structure was.

Since Earth’s impact features are incomplete, scientists study the lunar surface to understand both the Earth and the Moon’s bombardment history. Fortunately, some evidence from the lunar surface has made it to Earth in the form of samples collected by landers. Some serendipitous evidence also comes in the form of meteorites.

Study co-author Dr. Romain Tartese, Senior Lecturer at The University of Manchester, said, “The implications of our findings reach far beyond the Moon. We know that the Earth and the Moon likely experienced similar impacts during their early history, but rock records from the Earth have been lost. We can use what we have learnt about the Moon to provide us with clues about the conditions on Earth during the same period of time.”

When a large impactor travelling quickly strikes a rocky planet or moon, it releases a lot of energy. The impact can spread debris around the surface and even launch some into space. Scientists have studied multiple meteorites that came from lunar and Mars impacts, and they’ve learned a lot by studying them. In fact, there are so many of them that they’ve been able to categorize many meteorites according to their asteroidal parent bodies.

At least one piece of debris from the impact reached Earth: a lunar meteorite named Northwest Africa 2995.

Over the years, different researchers have examined NWA 2995. By comparing it to Apollo samples, they’ve found that it has the same oxygen isotope ratios, which points to a shared lunar origin. The meteorite’s minerals and texture are also very similar to crustal rocks from the lunar highlands.

The researchers write that the meteorite is in “good agreement with lithologies exposed within the southern region of the SPA basin.”

NWA 2995 was found in Algeria in 2005 and it hasn’t been on Earth for long. It’s only been here for a few thousand years, and by analyzing the concentration of certain cosmogenic nuclides, which are atoms produced by exposure to cosmic rays, scientists have determined that the rock has only been travelling in space for about 22 million years. So, though it was initially created in an ancient impact, it was only launched into space much later by a subsequent impact. MWA 2995 is relatively unchanged and can provide insights into the early Solar System.

NWA 2995 is what scientists call regolith breccia. Regolith is the layer of unconsolidated rocky material that covers bedrock. Breccia is a rock formed from angular fragments of rocks and minerals that are cemented together by fine-grained material. According to the authors, NWA 2995 represents an “ancient fused lunar soil, made up of many different rock and mineral components. ”

The researchers examined NWA 2995 to constrain the age of the SPA basin. They used radiometric dating on a range of mineral and rock components of the meteorite to find NWA 2995’s age.

This image from the research shows a section of NWA 2995 in four different views. a is an optical scan, b is a back-scattered electron image from an electron microscope, c is a cathodoluminescence image that highlights certain minerals, and d is a composite false colour element map. The colours represent silica (blue), aluminum (white), magnesium (green), iron (red), titanium (pink), potassium (cyan) and calcium (yellow). Image Credit: Joy et al. 2024.

The researchers also compared NWA 2995 with orbital data from NASA’s Lunar Prospector, which used a low polar orbit to map the Moon’s surface composition. They created a map showing the probabilities that the meteorite originated in different regions on the Moon.

This figure from the research shows the probability that NWA 2995 came from different locations on the lunar surface. Image Credit: Joy et al. 2024.

They found that the meteorite most likely came from one of two locations, both inside the SPA. The nearby Cabannes craters are all the right size to eject a rock like NWA 2995.

c is from a unified geological map of the Moon, and d shows stratigraphic units by age. Image Credit: Joy et al. 2024.

The researchers analyzed the ages of uranium and lead in NWA 2995. Overall, the results indicate that the SPA basin formed about 4.32–4.33 billion years ago. That means that it formed about 120 million years before the main cluster of other lunar basins like the Serenitatis, Nectaris, and Crisium basins.

This image shows thorium concentrations on the Moon. Thorium is used in conjunction with uranium in radiometric dating to help determine the Moon’s chronology. Radiometric data suggests that NWA 2995 came from the South Pole-Aitken Basin. Image Credit: Joy et al. 2024.

Dr Joshua Snape, Royal Society University Research Fellow at The University of Manchester, is one of the co-authors of the new research. “Over many years, scientists across the globe have been studying rocks collected during the Apollo, Luna, and Chang’e 5 missions, as well as lunar meteorites, and have built up a picture of when these impact events occurred,” Snape said.

“For several decades there has been general agreement that the most intense period of impact bombardment was concentrated between 4.2-3.8 billion years ago – in the first half a billion years of the Moon’s history,” said Snape. “But now, constraining the age of the South-Pole Aitken basin to 120 million years earlier weakens the argument for this narrow period of impact bombardment on the Moon and instead indicates there was a more gradual process of impacts over a longer period.”

These results will only grow stronger when future missions collect more samples from the area. “The proposed ancient 4.32 billion year old age of the South Pole-Aiken basin now needs to be tested by sample return missions collecting rocks from known localities within the crater itself,” said lead author Joy.

“Our proposed formation age for SPA will require confirmation from future radiometric dating of samples collected from the south of the Apollo basin area by the Chang’e–6 mission or from future proposed missions such as the Endurance-A rover concept that aims to collect 100?kg of samples from across the SPA basin floor,” the authors write in their conclusion.

The post Scientists Determine the Age of the Moon’s Oldest and Largest Impact Basin appeared first on Universe Today.

Categories: Science

Preserved tracks suggest non-avian dinosaurs used their wings to run

New Scientist Feed - Mon, 10/21/2024 - 12:00pm
Not all winged dinosaurs were necessarily capable of full flight, but this anatomical feature may have enabled them to travel further by flapping or gliding
Categories: Science

Unexpected beauty, major antimicrobial power boost as phages form into surprising flower shapes

Matter and energy from Science Daily Feed - Mon, 10/21/2024 - 11:57am
Researchers who work with bacteriophages -- viruses that eat bacteria -- had a pleasant and potentially very important surprise after treating samples to view under an electron microscope: they had joined together into three-dimensional shapes that look like sunflowers, but only two-tenths of a millimetre across, taking a form that makes them 100 times more efficient.
Categories: Science

Many Iron Age swords may be tainted by modern forgery

New Scientist Feed - Mon, 10/21/2024 - 10:00am
Ancient weaponsmiths combined bronze and iron to fashion swords during the early Iron Age – but modern forgers glue together elements from different weapons, making it difficult for researchers to study the ancient technology
Categories: Science

Combining satellite methods provides drought detection from space

Space and time from Science Daily Feed - Mon, 10/21/2024 - 9:33am
Observing sites like the Amazon basin from space has underscored the capability of satellites to better detect signs of drought, according to a new study. The researchers combined Global Positioning System (GPS) and the Gravity Recovery and Climate Experiment (GRACE methods to improve monitoring of hydrological droughts.
Categories: Science

Pages

Subscribe to The Jefferson Center  aggregator