Chemists have synthesized materials that can improve solar elements for indoor use. Such photovoltaic cells, which can also be integrated into various electronic devices, generate electricity even in low-light conditions.
Non-reciprocal interactions allow the design of more efficient molecular systems. Scientists now propose a mechanism on how energy barriers in complex systems can be overcome. These findings can help to engineer molecular machines and to understand the self-organization of active matter.
Non-reciprocal interactions allow the design of more efficient molecular systems. Scientists now propose a mechanism on how energy barriers in complex systems can be overcome. These findings can help to engineer molecular machines and to understand the self-organization of active matter.
Researchers are investigating ways to better plan for climate-resilient energy systems in the Global South. Focusing on the case study of Accra, the capital of Ghana, the multidisciplinary team expanded conventional energy system modeling approaches by incorporating a range of socio-techno-economic challenges, climate change impacts, and resilience metrics into their models. Their approaches are applicable worldwide to support widespread sustainable and resilient energy system transitions.
In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.
Single-walled carbon nanotubes (SWCNTs) hold promise for biomedicine and nanoelectronics, yet the functionalization with single-stranded DNA (ssDNA) remains a challenge. Researchers using high-affinity ssDNA sequences identified through high-throughput selection. They demonstrated the effectivity and stability of these constructs using molecular dynamics simulations. Machine-learning models were used to accurately predict patterns that govern ssDNA-SWCNT binding affinity. These findings provide valuable insights into the interactions between ssDNA and SWCNTs.
3D-printed blood vessels, which closely mimic the properties of human veins, could transform the treatment of cardiovascular diseases. Strong, flexible, gel-like tubes -- created using a novel 3D printing technology -- could improve outcomes for heart bypass patients by replacing the human and synthetic veins currently used in surgery to re-route blood flow, experts say.
A gentle rumble ran under a researcher's feet as a rocket carrying her research -- live, human muscle cells grown on scaffolds fixed on tiny chips -- lifted off, climbed, and disappeared into the sky to the International Space Station National Laboratory. These chips would help her better understand muscle impairment, often seen in astronauts and older adults, and test drugs to counter the condition.
Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.
A new method to measure the continuous spectrum of light is set to improve thermal imaging and infrared thermography.
A noninvasive colorectal cancer screening test that can be done at home could reduce the risk of colorectal cancer death by 33%, according to a new study.
Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.
Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.
Researchers have developed a material that shows a remarkable ability to convert sunlight and water into clean energy.
Tackling a long-time mystery, scientists have found that the turbulent movements of air in clouds play a key role in the growth of water droplets and the initiation of rain. The research can improve computer model simulations of weather and climate and ultimately lead to better forecasts.
Researchers are proposing a new way to curb industrial emissions, by tapping into the 'atomic intelligence' of liquid metals to deliver greener and more sustainable chemical reactions.
Machine learning models can reliably inform clinicians about the disability progression of multiple sclerosis, according to a new study published this week in the open-access journal PLOS Digital Health by Edward De Brouwer of KU Leuven, Belgium, and colleagues.
Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Pages