Some exoplanets have characteristics totally alien to our Solar System. Hot Jupiters are one such type. They can have orbital periods of less than 10 days and surface temperatures that can climb to well over 4,000 K (3,730 °C or 6,740 °F). Unlike any planets in our system, they’re usually tidally locked.
Astronomers probed the atmosphere of one hot Jupiter and found some strange winds blowing.
The planet is WASP-121 b, also known as Tylos. It is about 860 light-years away from Earth in the constellation Puppis. It has about 1.16 Jupiter masses and a radius about 1.75 times that of Jupiter. It’s extremely close to its main sequence star and completes an orbit every 1.27 days. Tylos is tidally locked to its star, and its dayside temperature is 3,000 Kelvin (2,730 °C or 4,940 °F), qualifying it as an ultra-hot Jupiter.
“It feels like something out of science fiction.”
Julia Seidel, European Southern ObservatorySince its discovery in 2015, Tylos’ atmosphere has been studied many times. Researchers found water in its stratosphere and hints of titanium oxide and vanadium oxide. They’ve also detected iron and chromium, though some subsequent studies failed to replicate some of these findings.
In new research, scientists examined Tylos’ atmosphere in greater detail with the four telescopes that make up the VLT. With help from the VLT’s ESPRESSO instrument, the researchers found powerful winds blowing through the exoplanet’s atmosphere and confirmed the presence of iron and titanium. The results are in two new papers.
“Even the strongest hurricanes in the Solar System seem calm in comparison.”
Julia Seidel, European Southern ObservatoryThe first paper, “Vertical structure of an exoplanet’s atmospheric jet stream,” was published in Nature. The lead author is Julia Seidel, a researcher at the European Southern Observatory (ESO).
The second is “Titanium chemistry of WASP-121 b with ESPRESSO in 4-UT mode,” which was published in the journal Astronomy and Astrophysics. The lead author is Bibiana Prinoth, a PhD student at Lund University, Sweden, who is also with the European Southern Observatory.
Some of the researchers involved are co-authors of both papers.
“Ultra-hot Jupiters, an extreme class of planets not found in our solar system, provide a unique window into atmospheric processes,” the authors of the Nature paper write. “The extreme temperature contrasts between their day- and night-sides pose a fundamental climate puzzle: how is energy distributed?”
An artist’s impression of Tylos, also known as WASP-121 b. Image Courtesy: NASA, ESA, Q. Changeat et al., M. Zamani (ESA/Hubble)“This planet’s atmosphere behaves in ways that challenge our understanding of how weather works — not just on Earth, but on all planets. It feels like something out of science fiction,” said Julia Seidel, the lead author of the study published in Nature.
With the power of the VLT and ESPRESSO, the researchers were able to study Tylos’ atmosphere in detail. No other exoplanet atmosphere has ever been studied in such detail and to such depth. The researchers created a 3D map of the atmosphere, revealing distinct layers and winds.
Tylos’ atmosphere is divided into three layers, with iron winds at the bottom, followed by a very fast jet stream of sodium, and finally, an upper layer of hydrogen winds. This kind of climate has never been seen before on any planet. Image Credit: ESO/M. Kornmesser“What we found was surprising: a jet stream rotates material around the planet’s equator, while a separate flow at lower levels of the atmosphere moves gas from the hot side to the cooler side. This kind of climate has never been seen before on any planet,” said Seidel. The observed jet stream spans half of the planet, gaining speed and violently churning the atmosphere high up in the sky as it crosses the hot side of Tylos. “Even the strongest hurricanes in the Solar System seem calm in comparison,” she adds.
“It’s truly mind-blowing that we’re able to study details like the chemical makeup and weather patterns of a planet at such a vast distance.”
Bibiana Prinoth, Lund University and the European Southern ObservatoryThe VLT has an interesting design and is billed by the European Southern Observatory as “the world’s most advanced visible-light astronomical observatory.” It has four main units with 8.2-meter primary mirrors and four smaller, movable auxiliary ‘scopes with 1.8-meter primary mirrors. When working together with the ESPRESSO instrument, the VLT operates as a single, powerful telescope. This combined power meant that the VLT gathered ample data during a single transit of Tylos in front of its star.
“The VLT enabled us to probe three different layers of the exoplanet’s atmosphere in one fell swoop,” said study co-author Leonardo A. dos Santos, an assistant astronomer at the Space Telescope Science Institute. The researchers traced the movement of the winds by tracking the movements of different elements: iron, sodium, and hydrogen correspond to the deep, mid, and shallow layers of the atmosphere. “It’s the kind of observation that is very challenging to do with space telescopes, highlighting the importance of ground-based observations of exoplanets,” he adds.
This diagram shows the structure and motion of the atmosphere of the exoplanet Tylos (WASP-121b). The exoplanet is shown from above in this figure, looking at one of its poles. The planet rotates counter-clockwise in such a way that it always shows the same side to its parent star. One side is perpetual day, and the other is perpetual night. The transition between night and day is the “morning side,” while the “evening side” represents the transition between day and night; its morning side is to the right, and its evening side is to the left. Image Credit: ESO/M. KornmesserThe observations revealed an exoplanet atmosphere with unusual complexity.
When Tylos crosses in front of its host star, known as a transit, atoms in the planet’s atmosphere absorb specific wavelengths of starlight, which was measured with the VLT’s ESPRESSO instrument. With that data, astronomers reconstructed the composition and velocity of different layers in the atmosphere. An iron wind blows in the deepest layer, away from the point of the planet where the star is directly overhead. Above the iron layer is a very fast jet of sodium that moves faster than the planet rotates. The sodium jet accelerates as it moves from the planet’s morning side to its evening side. The upper layer is made of hydrogen, where the wind blows outwards. The hydrogen layer overlaps with the sodium jet below it.
The authors explain that this unusual planet is more than just an oddity. Its unusual characteristics make it a great testbed for Global Circulation Models. “By resolving the vertical structure of atmospheric dynamics, we move beyond integrated global snapshots of the atmosphere, enabling more accurate identification of flow patterns and allowing for a more nuanced comparison to models,” the authors explain.
The study published in Astronomy and Astrophysics is also based on data from the VLT and ESPRESSO. It uncovered more details of Tylos’ atmosphere, including its chemistry. “The transmission spectrum of WASP-121 b has been extensively studied using the cross-correlation technique, resulting in detections and confirmations for various atoms and ions, including H I, Mg I, Ca I, V I, Cr I, Fe I, Ni I, Fe II, Ca II, and K I, Ba II,” the authors write. “We confirm all these detections and additionally report detections for Ti I, Mn I, Co I Sr I, and Sr II.”
“This experience makes me feel like we’re on the verge of uncovering incredible things we can only dream about now.”
Bibiana Prinoth, Lund University and the European Southern ObservatoryThe researchers found titanium just below the jet stream. This finding is interesting because previous research detected titanium and subsequent research refuted that. “We attribute the capability of detecting Ti I to the superior photon-collecting power enabled by using ESPRESSO in 4-UT mode compared to a single 1-UT transit and to improvements in the application of the cross-correlation technique,” the authors explain.
The cross-correlation technique is a powerful method for studying exoplanet atmospheres. Light from the atmosphere is much fainter than light from the star and can be obscured by the much stronger starlight. The cross-correlation technique helps overcome this by comparing the observed spectrum with the known “template” spectrum of specific molecules and atoms expected to be present in the atmosphere.
This figure shows the two-dimensional cross-correlation function of H I, Li I, Na I, Mg I, K I, Ca I, Ti I, V I, Cr I, Mn I, Fe I, Fe II, Co I, Ni I, Ba II, Sr I and Sr II. The last panel shows the cross-correlation function for the entire atmospheric model. Image Credit: Prinoth et al. 2025.“It’s truly mind-blowing that we’re able to study details like the chemical makeup and weather patterns of a planet at such a vast distance,” said Bibiana Prinoth, lead author of the Astronomy and Astrophysics paper.
“The 4-UT mode of ESPRESSO, with its effective photon collecting area equivalent to that of a 16-meter class telescope, serves as a valuable test-bed for pushing the limits of S/N on relatively faint targets,” the authors write in their conclusion.
The study of exoplanet atmosphere with ground-based telescopes will soon get a big boost. In 2028, the long-awaited Extremely Large Telescope should begin operations. It will have a 39.3-metre-diameter primary mirror, giving it 250 times more light-gathering area than the Hubble. It will also feature powerful instruments to probe exoplanet atmospheres.
“The present analysis also allows us to anticipate the observational capabilities of the soon-to-be-commissioned ELT, particularly with regard to time-resolved studies of exoplanet atmospheres,” the authors write.
Who knows what further strangeness is waiting to be discovered in exoplanet atmospheres?
“The ELT will be a game-changer for studying exoplanet atmospheres,” said Prinoth. “This experience makes me feel like we’re on the verge of uncovering incredible things we can only dream about now.”
The post Strange Winds Blow Through this Exoplanet’s Atmosphere appeared first on Universe Today.
Stars form in Giant Molecular Clouds (GMCs), vast clouds of mostly hydrogen that can span tens of light years. These stellar nurseries can form thousands of stars. Astronomers know this because they observe these regions in the Milky Way and the Magellanic Clouds and watch as stars take shape.
But the Universe is more than 13 billion years old and has been forming stars for almost that entire time. The early Universe was different in notable ways. Was star formation any different in the early Universe?
One of the main differences between the early Universe and the modern Universe is metallicity. Elements heavier than hydrogen and helium, called metals in astronomy, didn’t exist in the very early Universe. Only after massive stars formed and died did the Universe’s metallicity increase. Metallicity affects many different processes, including star formation. Metals help cool down clouds of gas and dust, allowing them to collapse and form stars.
Scientists know a lot about the star formation process, but there are many outstanding questions. One of them concerns star formation in the early, low-metallicity Universe. How different was the star formation process billions of years ago?
“We can’t go back in time to study star formation in the early universe, but we can observe parts of the universe with environments similar to the early universe.”
Kazuki Tokuda, Kyushu University, JapanNew research in The Astrophysical Journal tackled the question. It’s titled “ALMA 0.1 pc View of Molecular Clouds Associated with High-mass Protostellar Systems in the Small Magellanic Cloud: Are Low-metallicity Clouds Filamentary or Not?” The lead author is Kazuki Tokuda, a Post-doctoral fellow in the Department of Earth and Planetary Sciences in the Faculty of Science at Kyushu University in Japan. Tokuda is also affiliated with the National Astronomical Observatory of Japan.
This simulation shows stars forming in a molecular cloud, including the jets emitted by young protostars. Astrophysicists know a lot about the star-formation process, but there are still many questions awaiting comprehensive answers. Video Credit: Mike Grudic/STARFORGE“Even today our understanding of star formation is still developing, comprehending how stars formed in the earlier universe is even more challenging,” said lead author Tokuda in a press release. “The early universe was quite different from today, mostly populated by hydrogen and helium. Heavier elements formed later in high-mass stars. We can’t go back in time to study star formation in the early universe, but we can observe parts of the universe with environments similar to the early universe.”
One of those places is the Small Magellanic Cloud (SMC), a dwarf galaxy near the Milky Way. The SMC’s metallicity is much lower than the Milky Way’s, containing only about one-fifth as many metals. This makes it analogous to the early Universe about 10 billion years ago.
In the Milky Way, star-forming molecular clouds tend to have a filamentary structure. Astronomers have wondered whether these same filamentary shapes are a universal feature found throughout cosmic time. “To test whether these structures are universal throughout cosmic star formation history, it is crucial to study low-metallicity environments within the Local Group,” the authors explain in their paper. Since the SMC is a close neighbour and also has a low metallicity, it’s a good place to look. However, searching the SMC for these filamentary features has been difficult due to the insufficient spatial resolution of many observatories.
The researchers used the Atacama Large Millimeter-submillimeter Array’s (ALMA) power to examine the SMC and see if it has the same star-forming filamentary structures. They focused on the molecular clouds associated with massive young stellar objects (YSOs) in the (SMC).
This image from the research shows the overall view of the SMC and the positions of the target YSOs. Image Credit: Tokuda et al. 2025.“In total, we collected and analyzed data from 17 molecular clouds. Each of these molecular clouds had growing baby stars 20 times the mass of our Sun,” said lead author Tokuda in a press release. “We found that about 60% of the molecular clouds we observed had a filamentary structure with a width of about 0.3 light-years, but the remaining 40% had a ‘fluffy’ shape. Furthermore, the temperature inside the filamentary molecular clouds was higher than that of the fluffy molecular clouds.”
This figure from the new research shows the 17 molecular clouds the researchers observed with ALMA. Most had the same filamentary shape as clouds in the Milky Way, shown in the yellow boxes. But 40% had a fluffy shape, as shown in the blue boxes. Image Credit: (ALMA (ESO/NAOJ/NRAO), Tokuda et al. 2025, ESA/Herschel)In their paper, the authors describe it this way: “Our analysis shows that about 60% of the clouds have steep radial profiles from the spine of the elongated structures, while the remaining clouds have a smooth distribution and are characterized by lower brightness temperatures. We categorize the former as filaments and the latter as nonfilaments.”
This figure shows the 17 molecular clouds in the study. The ones with yellow check marks are the ones identified as filaments. Image Credit: Tokuda et al. 2025.The clouds were not uniform and displayed a diversity of shapes. The researchers classified them into four separate types: single filaments, hub filaments, spatially compact clouds, and diffuse clouds.
These panels illustrate the four types of filaments the authors used to categorize their observations: (a) single filaments, (b) hub filaments, (c) spatially compact clouds, and (d) diffuse clouds. Image Credit: Tokuda et al. 2025.The temperature difference between the filamentary and fluffy shapes was probably due to their ages. The authors think all clouds started out as filamentary and had high temperatures due to cloud-to-cloud collisions. The clouds have weak turbulence when the temperatures are higher.
However, as the temperature drops, the movement of the incoming gas creates more turbulence. This smooths out the filamentary structure, creating the fluffy shapes.
According to the research, filamentary and fluffy clouds form stars differently. Clouds that hold onto their filamentary shapes are more likely to break apart along their length and form many lower-mass stars similar to our Sun, including planetary systems. When the filamentary structure changes to a fluffy structure, it becomes more difficult for such stars to form.
The implication is that the morphology of the clouds tells us about their evolutionary stages.
“Some of the filamentary clouds are associated with YSOs with outflows and exhibit higher temperatures, likely reflecting their formation conditions, suggesting that these clouds are younger than the nonfilamentary ones,” the authors write in their paper.
The study also emphasizes that the same temperature and structure changes have not been observed in higher metallicity environments like the Milky Way. “Such transitions in structure and temperature have not been reported in metal-rich regions, highlighting a key behaviour for characterizing the evolution of the interstellar medium and star formation in low-metallicity environments,” the authors explain.
With these results, Tokuda says the next step will be to compare them with observations of the Milky Way and other environments richer in heavy elements.
“This study indicates that the environment, such as an adequate supply of heavy elements, is crucial for maintaining a filamentary structure and may play an important role in the formation of planetary systems,” said Tokuda. “In the future, it will be important to compare our results with observations of molecular clouds in heavy-element-rich environments, including the Milky Way galaxy. Such studies should provide new insights into the formation and temporal evolution of molecular clouds and the universe.”
There are still more details to uncover about these filaments, what shapes them, and how they affect the stars they form. How does turbulence play its role? What role do magnetic fields play? Some filaments host YSOs with protostellar outflows. How does that radiative feedback affect the filaments?
Future research will address those questions.
“Future studies using the James Webb Space Telescope to measure the detailed IMF <initial mass function> down to the low-mass regime, combined with ALMA’s ability to probe the physical properties of the parent molecular gas, will be crucial to deepening our understanding of star formation in low-metallicity environments,” the authors conclude.
The post Fluffy Molecular Clouds Formed Stars in the Early Universe appeared first on Universe Today.